In mice, amyloidogenic type C apolipoprotein A-II (apoA-II) forms amyloid fibrils in age-associated amyloidosis. To understand the mechanism of amyloid fibril formation by apoA-II, we examined the polymerization of synthetic partial peptides of apoA-II in vitro. None of the partial apoA-II peptides polymerized into amyloid fibrils when tested as a single species mixture.
View Article and Find Full Text PDFAbeta2M (beta(2)-microglobulin-related) amyloidosis is a frequent and serious complication in patients on long-term dialysis. Partial unfolding of beta2-m (beta(2)-microglobulin) may be essential to its assembly into Abeta2M amyloid fibrils in vivo. Although SDS around the critical micelle concentration induces partial unfolding of beta2-m to an alpha-helix-containing aggregation-prone amyloidogenic conformer and subsequent amyloid fibril formation in vitro, the biological molecules with similar activity under near-physiological conditions are still unknown.
View Article and Find Full Text PDFHow various anti-amyloidogenic compounds inhibit the formation of Alzheimer's beta-amyloid fibrils (fAbeta) from amyloid beta-peptide (Abeta) and destabilize fAbeta remains poorly understood. Using spectrophotometry, spectrofluorometry, atomic force microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and surface plasmon resonance (SPR), we investigated the anti-amyloidogenic effects of five flavonoids on fAbeta in vitro. Oxidized flavonoids generally inhibited fAbeta(1-40) formation significantly more potently than fresh compounds.
View Article and Find Full Text PDF