Publications by authors named "Shinobu Sato"

A biotinyl cyclic naphthalene diimide (biotinyl cNDI) (1), in which biotin is introduced on the cyclic linker chain of cNDI with high G-quadruplex (G4) specificity, was synthesized. 1 was used for binding analysis to G4 DNAs such as c-myc, c-kit, CEGF, or TA-core. The results showed that 1 bind to G4 DNAs with high affinity and, especially, two molecules of 1 bind to c-myc DNA from top and bottom of G4 site at K = 3.

View Article and Find Full Text PDF

Cyclic anthraquinone derivatives (cAQs), which link two side chains of 1,5-disubstituted anthraquinone as a threading DNA intercalator, have been developed as G-quartet (G4) DNA-specific ligands. Among the cAQs, cAQ-mBen linked through the 1,3-position of benzene had the strongest affinity for G4 recognition and stabilization in vitro and was confirmed to bind to the G4 structure in vivo, selectively inhibiting cancer cell proliferation in correlation with telomerase expression levels and triggering cell apoptosis. RNA-sequencing analysis further indicated that differentially expressed genes regulated by cAQ-mBen were profiled with more potential quadruplex-forming sequences.

View Article and Find Full Text PDF

Potassium-sensing oligonucleotide, PSO, a conjugate of a quadruplex structure-forming oligonucleotide with a peptide incorporating a Förster Resonance Energy Transfer (FRET) chromophore pair, has been developed for fluorescent detection of potassium ion (K) in aqueous medium. PSO could be introduced into cells for real-time imaging of cytoplasmic K concentrations. To perform fluorescent imaging of K on the cell surface, we synthesized twelve PSO derivatives with different types of peptide types and lengths, and oligonucleotide sequences including thrombin-binding aptamer (TBA) sequences with FAM and TAMRA as a FRET chromophore pair, and evaluated their performance.

View Article and Find Full Text PDF

Newly synthesized naphthalene diimide carrying two β-cyclodextrins (NDI-β-CyDs) showed improved specificity for the parallel G-quadruplex structure alongside the hybrid G-quadruplex structure. Specifically, the highest binding affinity of NDI-β-CyDs for the telomere RNA G-quadruplex was observed. The binding simulation indicated that β-cyclodextrins might be available for loop nucleobase inclusion under its complex.

View Article and Find Full Text PDF

The human telomere region is known to contain guanine-rich repeats and form a guanine-quadruplex (G4) structure. As telomeres play a role in the regulation of cancer progression, ligands that specifically bind and stabilize G4 have potential therapeutic applications. However, as the human telomere sequence can form G4 with various topologies due to direct interaction by ligands and indirect interaction by the solution environment, it is of great interest to study the topology-dependent control of replication by ligands.

View Article and Find Full Text PDF

Novel cyclic naphthalene diimides, 8 and 12, containing ferrocene in the cyclic linker were synthesized as G-quartet (G4) specific electrochemical ligands via the reaction of 1,1'-ferrocenedipropanoic acid and the terminal amine moieties of naphthalene diimides with varying linker lengths. The redox potentials of 8 and 12 were ca. 0.

View Article and Find Full Text PDF

Ligands that bind to and stabilize guanine-quadruplex (G4) structures to regulate DNA replication have therapeutic potential for cancer and neurodegenerative diseases. Because there are several G4 topologies, ligands that bind to their specific types may have the ability to preferentially regulate the replication of only certain genes. Here, we demonstrated that binding ligands stalled the replication of template DNA at G4, depending on different topologies.

View Article and Find Full Text PDF

Interaction of cyclic naphthalene diimide derivatives (cNDIs), 1-4, with TA-core and c-myc as G-quartet (G4) DNA was studied under dilute or molecular crowding condition. Binding study for TA-core based on an isothermal titration calorimetry showed that 1-4 has 10 M order of binding affinity with the following order: 1 > 4 > 2 > 3 under both conditions. Meting temperature (T) of TA-core obtained from the temperature dependence of circular dichroism spectra shows that TA-core was most stabilized by 4, which is in agreement with the result of PCR stop assay and the stabilization effect for 1-3 was correlated with their binding affinity under dilute condition.

View Article and Find Full Text PDF

In this study, an electrochemical DNA biosensor was developed based on the fabrication of silicon nanowires/platinum nanoparticles (SiNWs/PtNPs) on a screen-printed carbon electrode (SPCE) for the detection of mitochondrial DNA (mtDNA) in food utilizing a new hybrid indicator, ferrocenylnaphthalene diimide (FND). The morphology and elemental composition of the SiNWs/PtNPs-modified SPCE was analyzed by field emission scanning electron microscopy (FESEM) combined with energy dispersive X-ray spectroscopy (EDX). Cyclic voltammetry (CV) was used to study the electrical contact between the PtNPs and the screen-printed working electrode through SiNWs, while electrochemical impedance spectroscopy (EIS) was used to measure the charge transfer resistance of the modified electrode.

View Article and Find Full Text PDF

G-quadruplex specific targeting molecules, also termed as G4 ligands, are attracting increasing attention for their ability to recognize and stabilize G-quadruplex and high potentiality for biological regulation. However, G4 ligands recognizing G-quadruplex were generally investigated within a dilute condition, which might be interfered with under a cellular crowding environment. Here, we designed and synthesized several new cyclic naphthalene diimide (cNDI) derivatives, and investigated their interaction with G-quadruplex under molecular crowding condition (40% / polyethylene glycol (PEG)200) to mimic the cellular condition.

View Article and Find Full Text PDF

Cyclic naphthalene diimides (cNDIs), with a ferrocene moiety (cFNDs) and different linker lengths between the ferrocene and cNDI moieties, were designed and synthesized as redox-active, tetraplex-DNA ligands. Intramolecular stacking was observed between ferrocene and the NDI planes, which could affect the binding properties for G-quadruplexes. Interestingly, the circular dichroism spectrum of one of these compounds clearly shows new Cotton effects around 320-380 and 240 nm, which can be considered a direct evidence of intramolecular stacking of ferrocene and the NDI.

View Article and Find Full Text PDF

A new type of dimeric cyclic naphthalene diimide derivatives (cNDI-dimers) carrying varied linker length were designed and synthesized to recognize dimeric G-quadruplex structures. All of the cNDI-dimers exhibited a high preference for recognizing G-quadruplex structures, and significantly enhanced the thermal stability of the dimeric G-quadruplex structure over the cNDI monomer by increasing the melting temperature by more than 23 °C, which indicated the strengthened ability of cNDI dimers for stabilizing dimeric G-quadruplex. cNDI dimers also showed a stronger ability to inhibit telomerase activity and stop telomere DNA elongation than cNDI monomer, which showed an improved anticancer potentiality for further therapeutic application.

View Article and Find Full Text PDF

A peptide-oligonucleotide conjugate (1) was synthesized by the attachment of FAM, TAMRA, and biotin moieties to a telomere DNA sequence of 5'-TAG GGT TAG GGT TAG GGT TAG GG-3'. This conjugate was induced to be an anti-parallel structure in the presence of sodium ion (Na), whereas a hybrid one was formed under potassium ion (K) as a monitoring by circular dichromic spectra. The conformation change of this conjugate gave an effective FRET signal change upon the addition of NaCl, compared with the case of KCl.

View Article and Find Full Text PDF

Highly sensitive and multiplexed in vitro detection of osteoporosis-related biochemical markers were carried out based on the membrane-based microwave-mediated electrochemical immunoassay (MMeEIA), where we can dramatically reduce the sample preparation time by shortening the incubation time of conjugation to obtain sensitive detection based on three dimensional conjugation of antibodies with target antigens in nylon membrane disk. C-terminal cross-linked telopeptide of type I collagen (CTx), Osteocalcin (OC), parathyroid hormone (PTH), and N-terminal propeptide of type I collagen (P1NP), which can be utilized to monitor the progress of osteoporosis, were quantified using their corresponding antibody immobilized in membranes. Coefficient of variations in this intra- and inter-assays were within 8.

View Article and Find Full Text PDF

Synthesized cyclic perylene diimide, cPDI, showed the binding constant of 6.3 × 10 M with binding number of n = 2 with TA-core as a tetraplex DNA in 50 mM Tris-HCl buffer (pH = 7.4) containing 100 mM KCl using Schatchard analysis and showed a higher preference for tetraplex DNA than for double stranded DNA with over 10 times.

View Article and Find Full Text PDF

Telomerase activity is present in most cancers and is tightly regulated by the expression of human telomerase reverse transcriptase (hTERT). Hypermethylation in the promoter region of hTERT contributes to the regulation of hTERT expression. In this study, we investigated the methylation and expression of hTERT in oral squamous cell carcinoma (OSCC), oral leukoplakia, and normal oral mucosa.

View Article and Find Full Text PDF

To identify an effective ligand that binds to a G-quadruplex structure but not a double-stranded DNA (dsDNA), a set of biophysical and biochemical experiments were carried out using newly synthesized cyclic ferrocenylnaphthalene diimide (cFNDI, 1) or the non-cyclic derivative (2) with various structures of G-quadruplex DNAs and dsDNA. Compound 1 bound strongly to G-quadruplexes DNAs (10M order) with diminished binding to dsDNA (10M order) in 100mM AcOH-AcOK buffer (pH 5.5) containing 100mM KCl.

View Article and Find Full Text PDF

Seven ferrocenyl naphthalene diimide (FND) ligands were synthesized. Each had a higher affinity for tetraplex DNA than for either single- or double-stranded DNA. The FND binding affinities were >10M in 0.

View Article and Find Full Text PDF

Tne cotton rat (Sigmodon hispidus) is a laboratory rodent used for studying human infectious diseases. However, a lack of suitable anesthetic agents inconveniences the use of cotton rats in surgical manipulation. This study demonstrated that subcutaneous injection of the mixture of medetomidine, midazolam, and butorphanol (0.

View Article and Find Full Text PDF

The cotton rat (Sigmodon hispidus) is a laboratory rodent that has been used for studies on human infectious diseases. In the present study, we observed that female cotton rats, not the male cotton rats, developed chronic anemia characterized by reduced red blood cell, hemoglobin, and hematocrit levels from 5 to 9 months of age without any changes in the mean corpuscular hemoglobin and volume levels. In peripheral blood, the reticulocyte count did not increase in response to anemia in female cotton rats, and no extramedullary hematopoiesis was observed in the liver or spleen.

View Article and Find Full Text PDF

Diagnosis of periodontal disease by Fourier transform infrared (FT-IR) microscopic technique was achieved for saliva samples. Twenty-two saliva samples, collected from 10 patients with periodontal disease and 12 normal volunteers, were pre-processed and analyzed by FT-IR microscopy. We found that the periodontal samples showed a larger raw IR spectrum than the control samples.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a new detection method for telomerase called the electrochemical telomerase assay (ECTA), which is easier and more precise than conventional methods.
  • A pilot study involving 70 participants (44 with oral cancer and 26 healthy) showed that ECTA significantly detects telomerase levels in oral cancer patients across different sample types (whole cavity cells, local lesion cells, and tumor tissue).
  • ECTA demonstrated high sensitivity (up to 95%) and specificity (up to 92%) for detecting oral cancer, regardless of factors like age or tumor characteristics, indicating its potential as an effective screening tool.
View Article and Find Full Text PDF

Previously, we reported our investigations of the interaction between a cyclic naphthalene diimide derivative (cNDI 1) and double stranded DNA (dsDNA) (Bioorg. Med. Chem.

View Article and Find Full Text PDF

A cyclic naphthalene diimide (cyclic NDI, 1), carrying a benzene moiety as linker chain, was synthesized and its interaction with G-quadruplex DNAs of a-core and a-coreTT as a human telomeric DNA, c-kit and c-myc as DNA sequence at promoter region, or thrombin-binding aptamer (TBA) studied based on UV-VIS and circular dichroism (CD) spectroscopic techniques, thermal melting temperature measurement, and FRET-melting assay. The circular dichroism spectra showed that 1 induced the formation of different types of G-quadruplex DNA structure. Compound 1 bound to these G-quadruplexes with affinities in the range of 106-107 M-1 order and a 2:1 stoichiometry.

View Article and Find Full Text PDF