Light-element-based fluorescent materials, colloidal graphene quantum dots, and carbon dots (CDs) have sparked an immense amount of scientific interest in the past decade. However, a significant challenge in practical applications has emerged concerning the development of solid-state fluorescence (SSF) materials. This study addresses this knowledge gap by exploring the unexplored photonic facets of C-based solid-state microphotonic emitters.
View Article and Find Full Text PDFSulfur-33( S) stable-isotope labeled taurine, 2-aminoethanesulfonic acid, has been synthesized, and a series of solution and solid-state S nuclear magnetic resonance (NMR) experiments at 14.1 and 18.8 T, respectively, have been carried out at room temperature.
View Article and Find Full Text PDFThe chemical order and disorder of solids have a decisive influence on the material properties. There are numerous materials exhibiting chemical order/disorder of atoms with similar X-ray atomic scattering factors and similar neutron scattering lengths. It is difficult to investigate such order/disorder hidden in the data obtained from conventional diffraction methods.
View Article and Find Full Text PDFStructural determination of adsorbed atoms on layered structures such as clay minerals is a complex subject. Radioactive cesium (Cs) is an important element for environmental conservation, so it is vital to understand its adsorption structure on clay. The nuclear magnetic resonance (NMR) parameters of Cs, which can be determined from solid-state NMR experiments, are sensitive to the local neighboring structures of adsorbed Cs.
View Article and Find Full Text PDFThe inhalation of nitric oxide (NO), which acts as a selective vasodilator of pulmonary blood vessels, is an established medical treatment. However, its wide adoption has been limited by the lack of a convenient delivery technique of this unstable gas. Here we report that a solid mixture of FeSO·7HO and a layered double hydroxide (LDH) containing nitrite (NO) in the interlayer spaces (NLDH) stably generates NO at a therapeutic level (∼40 ppm over 12 h from freshly mixed solids; ∼80 ppm for 5-10 h from premixed solids) under air flow (0.
View Article and Find Full Text PDFUnderstanding the transport property of Li ions is crucial for improving the performance of Li-ion batteries. To investigate the ion diffusion at high temperatures, we constructed a high-temperature pulsed-field-gradient (PFG) nuclear magnetic resonance (NMR) probe capable of measurements at temperatures >700 K. The accuracy of the sample temperature was confirmed via Br NMR measurements of KBr.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
April 2021
Separated pure-quadrupole (PQ) and -shift (PS) spectra of H nuclear magnetic resonance (NMR) of paramagnetic solids are obtained and correlated by simple pulse sequences that can acquire the full magnetization under ideal conditions. Two-dimensional NMR signals obtained using an asymmetric π-pulse-inserted quadrupole-echo (APIQE) sequence yielded separated spectra through the skew operation of an affine transform (AT) before a Fourier transform. Modified APIQE sequences that acquire whole echo signals were fabricated, and separated PQ and PS spectra were obtained by applying a combination of AT, such as rotation and skew operations, to the signal data.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
October 2020
(1→3)-α-d-glucan synthesized by glucosyltransferase J (GtfJ) cloned from Streptococcus salivarius was regioselectively aminated as 6-amino-6-deoxy-(1→3)-α-d-glucan (aminoglucan) through three steps: bromination, azidation, and reduction. The degree of substitution of the amino group was determined by elemental analysis to be 0.97 and the molecular weight was 3.
View Article and Find Full Text PDFLayered double hydroxides (LDHs) are promising compounds in a wide range of fields. However, exchange of CO anions with other anions is necessary, because the CO anions are strongly affixed in the LDH interlayer space. To elucidate the reason for the extremely high stability of CO anions intercalated in LDHs, we investigated in detail the chemical states of CO anions and hydrated water molecules in the LDH interlayer space by synchrotron radiation X-ray diffraction, solid-state NMR spectroscopy, and Raman spectroscopy.
View Article and Find Full Text PDFThe adsorption sites of Cs on montmorillonite clays were investigated by theoretical Cs chemical shift calculations, Cs magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy, and X-ray diffraction under controlled relative humidity. The theoretical calculations were carried out for structures with three stacking variations in the clay layers, where hexagonal cavities formed with Si-O bonds in the tetrahedral layers were aligned as monoclinic, parallel, alternated; with various d-spacings. After structural optimization, all Cs atoms were positioned around the center of hexagonal cavities in the upper or lower tetrahedral sheets.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
November 2018
Indium-doped zinc oxide, a potential alternative material to indium tin oxide, was analyzed in powder form via Zn magic angle spinning nuclear magnetic resonance (MAS NMR). The Zn MAS NMR results show that the line shapes of zinc oxide were broadened by sintering, which was also observed for indium-doped zinc oxide, in which the broadening also depended on the sintering time. Furthermore, the line shapes of indium-doped zinc oxide were significantly broader than those of the corresponding zinc oxide, and were independent of the degree of indium doping.
View Article and Find Full Text PDFControlling valence state of metal ions that are doped in materials has been widely applied for turning optical properties. Even though hydrogen has been proven effective to reduce metal ions because of its strong reducing capability, few comprehensive studies focus on practical applications because of the low diffusion rate of hydrogen in solids and the limited reaction near sample surfaces. Here, we investigated the reactions of hydrogen with Cu-doped NaO-AlO-SiO glass and found that a completely different reduction from results reported so far occurs, which is dominated by the Al/Na concentration ratio.
View Article and Find Full Text PDFSolid-state NMR observations of low-gamma half-integer quadrupolar nuclei, Cl and Cl, were demonstrated using a 24 T hybrid magnet (H resonance frequency of 1.02 GHz) comprised of the high-temperature (HTS) and low-temperature (LTS) superconductors, and compared with results using a 14.1 T standard NMR magnet.
View Article and Find Full Text PDFThis study reports a first successful demonstration of a single channel proton 3D and 2D high-throughput ultrafast magic angle spinning (MAS) solid-state NMR techniques in an ultra-high magnetic field (1020MHz) NMR spectrometer comprised of HTS/LTS magnet. High spectral resolution is well demonstrated.
View Article and Find Full Text PDFWe have successfully developed a 1020MHz (24.0T) NMR magnet, establishing the world's highest magnetic field in high resolution NMR superconducting magnets. The magnet is a series connection of LTS (low-Tc superconductors NbTi and Nb3Sn) outer coils and an HTS (high-Tc superconductor, Bi-2223) innermost coil, being operated at superfluid liquid helium temperature such as around 1.
View Article and Find Full Text PDFThe single-crystal rotation technique was applied to magnetically oriented microcrystal arrays (MOMAs) of cellobiose (monoclinic) to determine the principal values and principal axes of the chemical shift tensors of C1 and C1' carbons. Rotations were performed about the magnetic χ1, χ2, and χ3 axes of MOMA, and the measurements were taken at six different orientations with respect to the applied magnetic field. Under these rotations, crowded peaks were reduced and the peaks for the C1 and C1' carbons were identified by comparing with simulation results.
View Article and Find Full Text PDFWe have investigated the structural transformation of solid silica spheres into various more complex spherical structures including flower-like, thick or thin nanosheet-shelled and porous shelled spheres. In the absence of organic additives, sodium salts contained in this inorganic reaction system apparently direct the silica dissolution and regrowth of dissolved silicate at the nanometer-scale, leading to the formation of a nanosheet network rather than solid aggregates. Subsequent removal of the salts by simple water washing results in voids in the siloxane network and a significant availability of surface silanol groups so that the resulting nanosheets and spheres composed of them possess large surface areas, pore volumes, and morphological flexibility, which can be varied by an applied stimulus.
View Article and Find Full Text PDFThe carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g.
View Article and Find Full Text PDFA triblock copolymer, poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) was used as a soft template to synthesize large-sized mesoporous phosphosilicate thin films. The kinetically frozen PS core stabilizes the micelles. The strong interaction of the inorganic precursors with the P2VP shell enables the fabrication of highly robust walls of phosphosilicate and the PEO helps orderly packing of the micelles during solvent evaporation.
View Article and Find Full Text PDFThe carbon cycle of carbonate solids (e.g., limestone) involves weathering and metamorphic events, which usually occur over millions of years.
View Article and Find Full Text PDFMethanol is a highly toxic substance, but it is unfortunately very difficult to differentiate from other alcohols (especially ethanol) without performing chemical analyses. Here we report that a composite film prepared from oxoporphyrinogen (OxP) and a layered double hydroxide (LDH) undergoes a visible color change (from magenta to purple) when exposed to methanol, a change that does not occur upon exposure to ethanol. Interestingly, methanol-induced color variation of the OxP-LDH composite film is retained even after removal of methanol under reduced pressure, a condition that does not occur in the case of conventional solvatochromic dyes.
View Article and Find Full Text PDFIn this study, we report a rapid and simple technique for obtaining cobalt aluminate having a spinel structure. The products were prepared from a hydroxide precursor synthesized by coprecipitation of cobalt (Co(2+)) and aluminum (Al(3+)) nitrates with an alkaline solution. The chosen precursor enabled low temperature fabrication of cobalt aluminate with a spinel structure by sintering it for 2 hours at low temperatures (>400 °C).
View Article and Find Full Text PDF