Polysulfone (PSF) medical waste can be effectively repurposed due to its excellent mechanical properties. Due to the increasing need for load-bearing bone implants, it is crucial to prioritize the development of biocompatible polymer-matrix composites. Calcium silicate (CaSi), known for its osteogenesis and antibacterial properties, is widely used in medical applications.
View Article and Find Full Text PDFCalcium silicate (CaSi) bone cement with antibacterial and osteogenic properties has attracted significant interest. However, there is a need to develop a variety of new premixed bone cement to meet the clinical requirements of fast setting time, ease of handling, and efficient antibacterial properties. In this study, different volume ratios of polyethylene glycol (PEG) and lactic acid liquids were added to calcium silicate, and the effects of varying liquid-to-powder ratios (L/P) were examined.
View Article and Find Full Text PDFBackground/purpose: Bacteria-associated oral diseases such as dental caries and periodontitis are widespread epidemics that cause oral pain and loss of function. The purpose of this study was to evaluate the in vitro cytotoxicity and antibacterial activity of different concentrations of hypochlorous acid (HOCl).
Materials And Methods: Five different concentrations (100, 200, 300, 400, and 500 ppm) of HOCl were evaluated for their antimicrobial efficacy against Gram-negative ( and ) and Gram-positive bacteria ( and ) after treatment for 1 and 10 min.
A variety of implant placement and loading protocols are identified, ranging from immediate implant placement on the day of extraction to delayed placement for at least 6 months after complete healing. The method of assessment of implant placement and loading plays an important role in the implantation. The expected clinical outcomes depend largely on multiple factors, such as the macroscopic design of the implant, surgical technique, and the quality and quantity of local bone in contact with the implant, which would be described in detail.
View Article and Find Full Text PDFOral infection is a common clinical symptom. While antibiotics are widely employed as the primary treatment for oral diseases, the emergence of drug-resistant bacteria has necessitated the exploration of alternative therapeutic approaches. One such modality is antimicrobial photodynamic therapy (aPDT), which utilizes light and photosensitizers.
View Article and Find Full Text PDFThe thermoresponsive drug-loaded hydrogels have attracted widespread interest in the field of medical applications due to their ease of delivery to structurally complex tissue defects. However, drug-resistant infections remain a challenge, which has prompted the development of new non-antibiotic hydrogels. To this end, we prepared chitosan-methacrylate (CTSMA)/gelatin (GEL) thermoresponsive hydrogels and added natural phenolic compounds, including tannic acid, gallic acid, and pyrogallol, to improve the efficacy of hydrogels.
View Article and Find Full Text PDFBackground/purpose: Bridge stability under loading was influenced by bridge span with the connector and implant abutment design. Thus, the purpose of this study was to evaluate the effects of rigid and non-rigid connector designs and pontic connections of different abutment systems in the tooth-implant supported prosthesis (TISP) at different span distances on the biomechanical stress distribution of the overall system components.
Materials And Methods: For comparative analysis, rigid and non-rigid bridge connections were fitted with three implant abutment systems (one-piece, two-piece and three-piece), and five implant-to-natural tooth distance configurations (12 mm, 14 mm, 16 mm, 18 mm, and 20 mm) were provided.
Background/purpose: The bond strength and durability of highly translucent zirconia ceramics to dentin is still unclear. The purpose of this study was to investigate the effect of various surface treatments on the bond strength of self-adhesive resin cements to high-translucent zirconia crowns and dentin.
Materials And Methods: A high-transparent zirconia and three self-adhesive resin cements (G-CEM LinkAce (GCL), RelyX U200 (RXU) and TotalCem (TTC)) were used.
The measurement of oxygen consumption of adherent cells is a profoundly important issue for estimating the bioenergetic health and metabolism activity of cells. The study describes the construction of a microfluidic chip consisting of an open container connected with a position-raised channel and dissolved oxygen (DO)-sensing gold ultramicroelectrodes for quantifying the oxygen consumption rate (OCR) of adherent cells. The microfluidic chip design can reduce the action of shear force on the adherent cells during medium replacement.
View Article and Find Full Text PDFCalcium silicate-based cement (CSC) has attracted much interest because of its favourable osteogenic effect that supports its clinical use. Although CSC has antibacterial activity, this activity still needs to be improved when used in an infected bone defect. Natural polyphenols have been considered antimicrobial reagents.
View Article and Find Full Text PDFBackground/purpose: The design of the connectors and implant abutments could affect the stress distribution of the tooth-implant supported prosthesis (TISP) entire system after loading. Therefore, the purpose of this study was to investigate the stress distribution of the TISP in different connectors and different implant abutments after loading.
Materials And Methods: The TISP design used in this study was divided into six models.
Background/purpose: The three-unit bridge that combines a natural tooth and an implant provides extended treatment possibilities for partially edentulous patients. We conducted a systematic review and meta-analysis of clinical trials to evaluate three-unit porcelain-fused-to-metal (PFM) tooth-implant-supported prosthesis (TISP) compared with implant-supported-prosthesis (ISP) reconstruction outcomes and complications.
Materials And Methods: The PubMed, Embase, and Cochrane library databases were searched for articles published before February 2021.
Intensive efforts have been made to eliminate or substantial reduce bacterial adhesion and biofilm formation on titanium implants. However, in the management of peri-implantitis, the methylene blue (MB) photosensitizer commonly used in photoantimicrobial chemotherapy (PACT) is limited to a low retention on the implant surface. The purpose of this study was to assess enhancive effect of water-soluble quaternary ammonium chitosan (QTS) on MB retention on biofilm-infected SLA (sandblasted, large grid, and acid-etched) Ti alloy surfaces in vitro.
View Article and Find Full Text PDFZirconia ceramics with high mechanical properties have been used as a load-bearing implant in the dental and orthopedic surgery. However, poor bone bonding properties and high elastic modulus remain a challenge. Calcium silicate (CaSi)-based ceramic can foster osteoblast adhesion, growth, and differentiation and facilitate bone ingrowth.
View Article and Find Full Text PDFTo ensure clinical success, the implant and the surrounding bone tissue must not only be integrated, but also must not be suspected of infection. In this work, an antibacterial and bioactive nanostructured calcium silicate (CaSi) layer on titanium substrate by an electrospray deposition method was prepared, followed by annealing at 700, 750 and 800 °C to improve the bonding strength of the CaSi coating. The phase composition, microstructure and bonding strength of the CaSi coatings were examined.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2020
The purpose of this study was to evaluate the physicochemical properties and the in vitro and in vivo osteogenesis of the newly developed calcium silicate containing 5 wt% gelatin (CSG) cement compared with calcium silicate (CS) and calcium sulfate hemihydrate (CSH) cements. In addition to the phase composition and microstructure, washout resistance, setting time, and diametral tensile strength of the bone cements were also performed. In vitro examination of cell growth, differentiation, and mineralization were performed with macrophage cell line (RAW 264.
View Article and Find Full Text PDFCalcium silicate (CaSi) materials have been used for bone repair and generation due to their osteogenic properties. Tailoring the surface chemistry and structure of CaSi can enhance its clinical performance. There is no direct comparison between microscale and nanoscale CaSi particles.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
May 2020
Calcium silicate cement has attracted much attention for bone defect repair and regeneration due to its osteogenic properties. Biomaterial-associated infections and washout have become a common clinical problem. In order to enhance the antibacterial and washout performance of calcium silicate cement to meet clinical needs, different types of chitosan, including chitosan polysaccharide (CTS), quaternary ammonium chitosan (QTS), and chitosan oligosaccharide (COS), as a liquid phase were added to the calcium silicate powder.
View Article and Find Full Text PDFThe concentration of methylene blue (MB) photosensitizer could affect the eradication efficacy of antimicrobial photodynamic therapy (aPDT) in the treatment of contaminated implants, which is linked to the osseointegration of the implant. We evaluated osteoblast functions on the contaminated SLA (sandblasting, large-grit and acid-etching) Ti alloy surfaces after the concentration-dependent use of MB-aPDT. Totally 1164 SLA discs were randomly distributed for the analyses of antibacterial efficacy and osteoblast functions.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
May 2019
Titanium and its alloys have been used as implant materials. Non-ideal osseointegration of the implant materials has facilitated the development of the bioactive coatings on the implant surfaces. In this work, the bioactive calcium silicate (CaSi) powder prepared in a green synthesis route was used to cover the surface of Ti implants by a facile electrospray deposition method.
View Article and Find Full Text PDFBackground: Surface modification of metallic implants is critical for improving the clinical performance of the dental and orthopedic devices. Bioactive glasses exhibit different levels of cellular function and physicochemical behavior; however, there have been few previous studies on the effect of constituents of the bioactive glasses on the in vitro osteogenic activity and corrosion resistance of apatite-based coatings.
Objective: The objective of this work was to investigate the effect of SiO2, CaO, Na2O, and P2O5 on plasma-sprayed apatite coatings on Ti alloy substrates for tailoring the properties of implants making them suitable for clinical applications.
Photodiagnosis Photodyn Ther
March 2019
Bacterial elimination using antimicrobial photodynamic therapy (aPDT) has been considered an alternative therapeutic modality in peri-implantitis treatment. The present in vitro study evaluated the dose-dependent and pH-dependent bactericidal effects of methylene blue (MB)-mediated aPDT at eliminating Gram-negative (P. gingivalis and A.
View Article and Find Full Text PDFBackground: To enhance calcium silicate cements (CSCs) towards a specific clinical application of endodontics and vertebroplasty, the addition of oxide dopants (Bi2O3, SrO, ZnO, ZrO2) as radiopacifiers allows for tailoring of material properties.
Objective: Effects of oxide dopants on the in vitro physicochemical properties and osetogenic activity of CSCs were investigated.
Methods: The setting time, compressive strength, radiopacity, and osteogenic ability of the cements were evaluated.
Tissue defects are usually caused by trauma, tumors, deformity, and infection. Use of tissue engineering technology to regenerate the defects, especially based on stem cells, has attracted widespread attention in recent years. To achieve faster healing and reconstruction of large scale defects, it is critically important to find scaffolds that are best for attachment and proliferation and can even induce the differentiation of stem cells.
View Article and Find Full Text PDF