An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFProtein arginine methyltransferases (PRMTs) regulate diverse biological processes and are increasingly being recognized for their potential as drug targets. Here we report the discovery of a potent, selective, and cell-active chemical probe for PRMT7. SGC3027 is a cell permeable prodrug, which in cells is converted to SGC8158, a potent, SAM-competitive PRMT7 inhibitor.
View Article and Find Full Text PDFT-3775440 is an irreversible inhibitor of the chromatin demethylase LSD1, which exerts antiproliferative effects by disrupting the interaction between LSD1 and GFI1B, a SNAG domain transcription factor, inducing leukemia cell transdifferentiation. Here, we describe the anticancer effects and mechanism of action of T-3775440 in small-cell lung cancer (SCLC). T-3775440 inhibited proliferation of SCLC cells and retarded SCLC tumor growth T-3775440 disrupted the interaction between LSD1 and the transcriptional repressor INSM1, thereby inhibiting expression of neuroendocrine-associated genes, such as INSM1 silencing phenocopied the effects of T-3775440 on gene expression and cell proliferation, consistent with the likelihood T-3775440 mediated its effects in SCLC by inhibiting INSM1.
View Article and Find Full Text PDFDysregulation of lysine (K)-specific demethylase 1A (LSD1), also known as KDM1A, has been implicated in the development of various cancers, including leukemia. Here, we describe the antileukemic activity and mechanism of action of T-3775440, a novel irreversible LSD1 inhibitor. Cell growth analysis of leukemia cell lines revealed that acute erythroid leukemia (AEL) and acute megakaryoblastic leukemia cells (AMKL) were highly sensitive to this compound.
View Article and Find Full Text PDFThe human epidermal growth factor receptor (HER) family plays a major role in cancer cell proliferation. Overexpression of these receptors occurs in various cancers, including breast cancer, and correlates with shorter time to relapse and lower overall survival. We recently reported that TAK-285, an orally bioavailable small molecule inhibitor of HER kinases, is not a p-glycoprotein substrate and penetrates the blood-brain barrier, suggesting favorable activity for the treatment of brain metastases.
View Article and Find Full Text PDFRecurrent mutations in histone-modifying enzymes imply key roles in tumorigenesis, yet their functional relevance is largely unknown. Here, we show that JARID1B, encoding a histone H3 lysine 4 (H3K4) demethylase, is frequently amplified and overexpressed in luminal breast tumors and a somatic mutation in a basal-like breast cancer results in the gain of unique chromatin binding and luminal expression and splicing patterns. Downregulation of JARID1B in luminal cells induces basal genes expression and growth arrest, which is rescued by TGFβ pathway inhibitors.
View Article and Find Full Text PDFBreast cancer therapy has improved following the development of drugs with specific molecular targets, exemplified by inhibitors of human epidermal growth factor receptor-2 (HER2) or epidermal growth factor receptor (EGFR) such as trastuzumab and lapatinib. However, these drugs have little effect on brain metastasis due to the combined effects of poor penetration of the blood-brain barrier and their removal from the central nervous system (CNS) by the p-glycoprotein (Pgp) drug efflux pump. We investigated the effects of TAK-285, a novel, investigational, dual EGFR/HER2 inhibitor that has been shown to penetrate the CNS and has comparable inhibitory efficacy to lapatinib which is a known Pgp substrate.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR) family plays a critical role in vital cellular processes and in various cancers. Known EGFR inhibitors exhibit distinct antitumor responses against the various EGFR mutants associated with nonsmall-cell lung cancer. The L858R mutation enhances clinical sensitivity to gefitinib and erlotinib as compared with wild type and reduces the relative sensitivity to lapatinib.
View Article and Find Full Text PDFThe aim of this study was to evaluate the usefulness of targeted intra-arterial carboplatin chemoradiotherapy in allowing less invasive surgery for patients with oral and oropharyngeal squamous cell carcinoma. Twenty patients with previously untreated squamous cell carcinoma of the oral cavity and oropharynx (T4; 8, T2; 12 patients) were treated with targeted transfemoral intra-arterial carboplatin infusion with concurrent hyperfractionated radiotherapy and the administration of tegafur/uracil (UFT). Of 20 patients, 15 underwent surgery after completion of one course of targeted chemoradiotherapy, and five were given another course or radiotherapy only.
View Article and Find Full Text PDFThis study was performed to analyze treatment of fractures of the edentulous mandible and to discuss this method in relation to the mandibular height at the fracture site. Fifteen fracture sites in 11 patients with an edentulous mandible were retrospectively examined. These fractures were located: nine fractures in the mandibular body, three in the paramedian region, and three in the mandibular angle.
View Article and Find Full Text PDFWnt/beta-catenin signaling plays important roles in tumorigenesis in certain tumors as well as during development. However, the mechanism of tumorigenesis mediated by this signaling remains to be elucidated. We investigated the response of rodent fibroblasts to activation of Wnt/beta-catenin signaling by treatment with conditioned medium containing soluble Wnt-3a protein (W3a-CM) and by expression of a constitutive active beta-catenin gene harbored by an adenovirus vector.
View Article and Find Full Text PDF