Many native insects have evolved defenses against native predators. However, their defenses may not protect them from non-native predators due to a limited shared history. The American bullfrog, (Anura: Ranidae), which has been intentionally introduced to many countries, is believed to impact native aquatic animals through direct predation.
View Article and Find Full Text PDFIn defensive mimicry, resemblance between unequally defended species can be parasitic; this phenomenon has been termed quasi-Batesian mimicry. Few studies have used real co-mimics and their predators to test whether the mimetic interactions were parasitic. Here, we investigated the mimetic interaction between two well-defended insect species, the bombardier beetle (Coleoptera: Carabidae) and the assassin bug (Hemiptera: Reduviidae), using their potential predator, the pond frog (Anura: Ranidae), which coexists with these insect species in the same habitat in Japan.
View Article and Find Full Text PDFWe report an automated cell-isolation system based on fluorescence image analysis of cell aggregates cultured in a photodegradable hydrogel. The system incorporates cell culture in a humidified atmosphere with controlled CO concentration and temperature, image acquisition and analysis, micropatterned light exposure, and cell collection by pipetting. Cell aggregates were cultured on hydrogels, and target cells were selected by phase contrast and fluorescence image analysis.
View Article and Find Full Text PDFGravity-driven microfluidics, which utilizes gravity force to drive liquid flow, offers portability and multi-condition setting flexibility because they do not require pumps or connection tubes to drive the flow. However, because the flow rate decreases with time in gravity-driven microfluidics, it is not suitable for stem cell experiments, which require long-term (at least a day) stability. In this study, gravity-driven microfluidics and a slow-tilting table were developed to culture cells under constant unidirectional perfusion.
View Article and Find Full Text PDFPredators can cause selection that drives the evolution of various anti-predator defenses in prey. Some prey species have evolved specific defensive devices, while others simply use body parts that evolved for reasons other than defense to repel predators. For example, many animal species have strong canine teeth or mandibles to kill prey and to counterattack their enemies.
View Article and Find Full Text PDFThis paper reports perfusion culture of human umbilical vein endothelial cells (HUVECs) on a microporous membrane in a pressure-driven microphysiological system (PD-MPS), which we developed previously as a multi-throughput perfusion culture platform. We designed fluidic culture unit with microporous membrane to culture HUVECs under fluidic shear stress and constructed a perfusion culture model in the PD-MPS platform. Four fluidic culture units were arranged in the microplate-sized device, which enables four-throughput assay for characterization of HUVECs under flow.
View Article and Find Full Text PDFInvasive non-native predators negatively affect native species; however, some native species can survive the predation pressures of invasive species by using pre-existing antipredator strategies or evolving defenses against invasive predators. The American bullfrog (Anura: Ranidae) has been intentionally introduced to many countries and regions, and has impacted native animals through direct predation. Bombardier beetles (Coleoptera: Carabidae: Brachininae: Brachinini) discharge chemicals at a temperature of approximately 100 °C from the tip of the abdomen when they are attacked by predators.
View Article and Find Full Text PDFHere we report the perfusion culture of a multi-layered tissue composed of HepG2 cells (a human hepatoma line) in a pressure-driven microphysiological system (PD-MPS), which we developed previously as a multi-throughput perfusion culture platform. The perfusion culture of multi-layered tissue model was constructed by inserting a modified commercially available permeable membrane insert into the PD-MPS. HepG2 cells were layered on the membrane, and culture medium was perfused both through and below the membrane.
View Article and Find Full Text PDFMost butterfly and moth larvae (Lepidoptera) are terrestrial. When terrestrial caterpillars accidentally fall into water, they may drown or be preyed upon by aquatic predators before they can safely reach land. However, how terrestrial caterpillars escape aquatic environments and predators remains unclear.
View Article and Find Full Text PDFSome animals have evolved chemical weapons to deter predators. Bombardier beetles (Coleoptera: Carabidae: Brachininae: Brachinini) can eject toxic chemicals at temperatures of 100 °C from the tips of their abdomens, 'bombing' the attackers. Although some bombardier beetles can reportedly deter predators, few studies have tested whether bombing is essential for successful defence.
View Article and Find Full Text PDFThe adults and larvae of some groups in the coleopteran family Carabidae are known to prey on snails (Mollusca: Gastropoda). Most species of the carabid tribe Licinini are believed to feed on live snails. However, the snail-eating behavior of only a few species has been studied.
View Article and Find Full Text PDFExamining intestine-liver interactions is important for achieving the desired physiological drug absorption and metabolism response in in vitro drug tests. Multi-organ microphysiological systems (MPSs) constitute promising tools for evaluating inter-organ interactions in vitro. For coculture on MPSs, normal cells are challenging to use because they require complex maintenance and careful handling.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2020
Cell culture under medium flow has been shown to favor human brain microvascular endothelial cells function and maturation. Here a three-dimensional in vitro model of the human brain microvasculature, comprising brain microvascular endothelial cells but also astrocytes, pericytes and a collagen type I microfiber - fibrin based matrix, was cultured under continuous medium flow in a pressure driven microphysiological system (10 kPa, in 60-30 s cycles). The cells self-organized in micro-vessels perpendicular to the shear flow.
View Article and Find Full Text PDFInside living organisms, concentration gradients dynamically change over time as biological processes progress. Therefore, methods to construct dynamic microscale concentration gradients in a spatially controlled manner are needed to provide more realistic research environments. Here, we report a novel method for the construction of dynamic microscale concentration gradients in a stepwise manner around cells in micropatterned hydrogel.
View Article and Find Full Text PDFPredation pressures can lead to the evolution of escape behavior in prey animals [1,2]. Most previous studies investigated how prey can escape from predators before contact [1,2], whereas recent studies have focused on the post-contact escape of prey [2]. Predators can damage prey by biting or chewing, and the predator's digestive system ultimately kills almost all prey after swallowing.
View Article and Find Full Text PDFEngineered blood vessels generally recapitulate vascular function in vitro and can be utilized in drug discovery as a novel microphysiological system. Recently, various methods to fabricate vascular models in hydrogels have been reported to study the blood vessel functions ; however, in general, it is difficult to fabricate hollow structures with a designed size and structure with a tens of micrometers scale for blood vessel tissue engineering. This study reports a method to fabricate the hollow structures in photodegradable hydrogels prepared in a microfluidic device.
View Article and Find Full Text PDFThe microphysiological system (MPS) is a promising tool for predicting drug disposition in humans, although limited information is available on the quantitative assessment of sequential drug metabolism in MPS and its extrapolation to humans. In the present study, we first constructed a mechanism-based pharmacokinetic model for triazolam (TRZ) and its metabolites in the entero-hepatic two-organ MPS, composed of intestinal Caco-2 and hepatic HepaRG cells, and attempted to extrapolate the kinetic information obtained with the MPS to the plasma concentration profiles in humans. In the two-organ MPS and HepaRG single culture systems, TRZ was found to be metabolized into α- and 4-hydroxytriazolam and their respective glucuronides.
View Article and Find Full Text PDFOrchids attach their pollinaria (cohesive masses of pollen) to specific body parts of flower visitors, but usually not to the hairy and scaly body parts of flower-visiting moths, because hairs and scales are easily detached. We demonstrate that pollinaria of Habenaria sagittifera (Orchidaceae) are transferred among flowers on the hairy thoraxes of moths in Japan. Diurnal and nocturnal insects visited the orchid flowers.
View Article and Find Full Text PDFSome animals, such as the bombardier beetles (Coleoptera: Carabidae: Brachinini), have evolved chemical defences against predators. When attacked, bombardier beetles can discharge noxious chemicals at temperatures of approximately 100 °C from the tip of their abdomens, "bombing" their attackers. Although many studies to date have investigated how bombardier beetles discharge defensive chemicals against predators, relatively little research has examined how predators modify their attacks on bombardier beetles to avoid being bombed.
View Article and Find Full Text PDFThe use of organ-on-a-chip (OOC) devices is a promising alternative to existing cell-based assays and animal testing in drug discovery. A rapid prototyping method with polydimethylsiloxane (PDMS) is widely used for developing OOC devices. However, because PDMS tends to absorb small hydrophobic molecules, the loss of test compounds in cell-based assays and increases in background fluorescence during observation often lead to biased results in cell-based assays.
View Article and Find Full Text PDF