We synthesized a new silyl porphyrin derivative conjugated with 6-deoxy-6-sulfo-α-d-glucopyranose (SGlc). Conjugation with SGlc improved A549 cellular uptake without significant changes in the photophysical and photochemical properties and subcellular localization. This improved cellular uptake led to enhanced photodynamic activity.
View Article and Find Full Text PDFIn this study, a double-stranded DNA (dsDNA) fluorescent labeling method was developed using the fusion proteins of fluorescent protein (FP), and 7 kDa DNA-binding family members including Sso7d from Sulfolobus solfataricus, Aho7c from Acidianus hospitalis, ATSV7 from Acidianus tailed spindle virus and Sto7 from Sulfolobus tokodaii. Using this fluorescent DNA labeling method, we succeeded in single-molecule imaging of bacteriophage λDNA molecules stretched on glass surfaces. The fluorescence of the λDNA with FP fusion proteins decayed 2.
View Article and Find Full Text PDFSulfoquynovosylacyl propanediol (SQAP; 1) has been developed as a radiosensitizer (anti-cancer agent) for solid tumors, but it was easily cleaved in vivo and had a problem of short residence time. We synthesized a novel compound of a SQAP derivative (3-octadecanoxypropyl 6-deoxy-6-sulfo-α-d-glucopyranoside: ODSG; 2) to solve these problems not easily cleaved by lipase. ODSG (2) cytotoxicity was investigated in vitro, resulting in low toxicity like SQAP (1).
View Article and Find Full Text PDFDNA replication, repair, and recombination in the cell play a significant role in the regulation of the inheritance, maintenance, and transfer of genetic information. To elucidate the biomolecular mechanism in the cell, some molecular models of DNA replication, repair, and recombination have been proposed. These biological studies have been conducted using bulk assays, such as gel electrophoresis.
View Article and Find Full Text PDFUsing bovine pancreatic ribonuclease A (RNase A) and cholesterol, we synthesized cholesteryl-conjugated ribonuclease A (CHRNase A) to evaluate the influence of a conjugated hydrophobic moiety on protein function. Nuclear magnetic resonance and matrix-assisted laser desorption/ionization time-of-flight spectrometry suggested that one cholesteryl group was conjugated to RNase A. Differential scanning calorimetry indicated that CHRNase A was denatured in the solid state but was folded in phosphate buffer (0.
View Article and Find Full Text PDFHydrophobic interaction is important for protein conformation. Conjugation of a hydrophobic group can introduce intermolecular hydrophobic contacts that can be contained within the molecule. It is possible that a strongly folded state can be formed in solution compared with the native state.
View Article and Find Full Text PDFContinued advancement of protein array, bioelectrode, and biosensor technologies is necessary to develop methods for higher amount and highly oriented immobilization activity of proteins. In pursuit of these goals, we developed a new immobilization method by combining electrostatic transport and subsequent molecular diffusion of protein molecules. Our developed immobilization method is based on a model that transports proteins toward the substrate surface due to steep concentration gradient generated by low-frequency AC electric field.
View Article and Find Full Text PDFWe observed that uncoated furosemide tablets turned yellow in a light-shielded automatic packaging machine and discoloration of the furosemide tablets was heterogeneity and occurred on the surface of the tablets only. The machine was equipped with an internal blower to maintain a constant temperature. Therefore, we investigated the effect of air flow on the discoloration of the furosemide tablets using a blower in a dark environment.
View Article and Find Full Text PDFSuperhelices, which are induced by the twisting and coiling of double-helical DNA in chromosomes, are thought to affect transcription, replication, and other DNA metabolic processes. In this study, we report the effects of negative supercoiling on the unwinding activity of simian virus 40 large tumor antigen (SV40 TAg) at a single-molecular level. The supercoiling density of linear DNA templates was controlled using magnetic tweezers and monitored using a fluorescent microscope in a flow cell.
View Article and Find Full Text PDFThe aim of this study was to identify the chemical structure of the photodegradation products of furosemide in a water-acetonitrile mixture (1 : 1). Furosemide solution was irradiated with a D65 fluorescent lamp and the products were isolated by preparative HPLC. The fractions were evaporated to dryness in vacuo.
View Article and Find Full Text PDFEffects of a negative supercoil on the local denaturation of the DNA double helix were studied at the single-molecule level. The local denaturation in λDNA and λDNA containing the SV40 origin of DNA replication (SV40ori-λDNA) was directly observed by staining single-stranded DNA regions with a fusion protein comprising the ssDNA binding domain of a 70-kDa subunit of replication protein A and an enhanced yellow fluorescent protein (RPA-YFP) followed by staining the double-stranded DNA regions with YOYO-1. The local denaturation of λDNA and SV40ori-λDNA under a negative supercoil state was observed as single bright spots at the single-stranded regions.
View Article and Find Full Text PDFT7 Exonuclease (T7 Exo) DNA digestion reactions were studied using direct single-molecule observations in microflow channels. DNA digestion reactions were directly observed by staining template DNA double-stranded regions with SYTOX Orange and staining single-stranded (digested) regions with a fluorescently labeled ssDNA-recognizing peptide (ssBP-488). Sequentially acquired photographs demonstrated that a double-stranded region monotonously shortened as a single-stranded region monotonously increased from the free end during a DNA digestion reaction.
View Article and Find Full Text PDFUsing a single-stranded region tracing system, single-molecule DNA synthesis reactions were directly observed in microflow channels. The direct single-molecule observations of DNA synthesis were labeled with a fusion protein consisting of the ssDNA-binding domain of a 70-kDa subunit of replication protein A and enhanced yellow fluorescent protein (RPA-YFP). Our method was suitable for measurement of DNA synthesis reaction rates with control of the ssλDNA form as stretched ssλDNA (+flow) and random coiled ssλDNA (-flow) via buffer flow.
View Article and Find Full Text PDFWe developed two labeling methods for the direct observation of single-stranded DNA (ssDNA), using a ssDNA binding protein and a ssDNA recognition peptide. The first approach involved protein fusion between the 70-kDa ssDNA-binding domain of replication protein A and enhanced yellow fluorescent protein (RPA-YFP). The second method used the ssDNA binding peptide of Escherichia coli RecA labeled with Atto488 (ssBP-488; Atto488-IRMKIGVMFGNPETTTGGNALKFY).
View Article and Find Full Text PDFDirect observation studies of single molecules have revealed molecular behaviors usually hidden in the ensemble and time-averaging of bulk experiments. Direct single DNA molecule analysis of DNA metabolism reactions such as DNA replication, repair, and recombination is necessary to fully understand these essential processes. Intercalation of fluorescent dyes such as YOYO-1 and SYTOX Orange has been the standard method for observing single molecules of double-stranded DNA (dsDNA), but effective fluorescent dyes for observing single molecules of single-stranded DNA (ssDNA) have not been found.
View Article and Find Full Text PDFA simple molecular combing method for analysis of biochemical reactions, called the moving droplet method, has been developed. In this method, small droplets containing DNA molecules run down a sloped glass substrate, and this creates a moving interface among the air, droplet, and substrate that stretches the DNA molecules. This method requires a much smaller volume of sample solution than other established combing methods, allowing wider application in various fields.
View Article and Find Full Text PDFSingle-molecule studies have revealed molecular behaviors usually hidden in the ensemble and time averaging of bulk experiments. Single-molecule measurement that can control physical form of individual DNA molecules is a powerful method to obtain new knowledge about correlation between DNA-tension and enzyme activity. Here we study the effect of physical form of DNA on exonucleaseIII (ExoIII) reaction.
View Article and Find Full Text PDFSingle-molecule DNA digestion by exonuclease III, which has 3' to 5' exonuclease activity, was analyzed using a micro-channel with two-layer laminar flow. First, a DNA-bead complex was optically trapped in one layer in the absence of exonuclease III permitted the DNA to be stretched by the laminar flow. The exonuclease III reaction was initiated by moving the trapped DNA-bead complex to another layer of flow, which contained exonuclease III.
View Article and Find Full Text PDFBinding of Rhodium (II) acetate [Rh(2)(O(2)CCH(3))(4)] (Rh1) compound with plasmid pUC19 DNA has been studied using different molar ratio of Rh1. After incubation for 24hr at 37 degrees C, binding of the Rh1 to pUC19 DNA was confirmed by agarose gel electrophoresis. The electrophoretic results indicated the slower migration speed for the linearized pUC19 DNA.
View Article and Find Full Text PDFBinding effect of the antitumor complex rhodium(II) acetate [Rh(2)(O(2)CCH(3))(4)] (Rh1) to the plasmid pUC19 DNA has been studied under different molar ratio of Rh1 compound to base pair of pUC19 DNA (R(f)) and reaction time. The Rh1 binding inhibited the activity of restriction enzyme. The binding effect was monitored using gel electrophoresis.
View Article and Find Full Text PDFThe electrospinning of stereocomplex nanofibers of high-molecular-weight poly(L-lactic acid) (PLLA)/poly(D-lactic acid) (PDLA) (PLLA/PDLA = 1:1) was carried out with chloroform as the spinning solvent. The stereocomplex nanofibers with diameters of 830-1400 and 400-970 nm were successfully obtained at voltages of -12 and -25 kV, respectively. Wide-angle X-ray scattering indicated that with an increasing absolute value of voltage from 0 to 25 kV the crystallinity of homo-crystallites composed of either PLLA or PDLA decreased from 5% to 1%, whereas the crystallinity of stereocomplex crystallites increased slightly from 16% to 20%.
View Article and Find Full Text PDFIn the current studies, we designed a new approach for sizing and isolating chromosomal DNA using coil-globule transition, which avoids fragmentation of giant DNA due to mechanical stress. Although coil-globule transition is reversible and globular DNA is tolerant to mechanical stress, globular DNA cannot be manipulated by an electric field because of the loss of its negative charges. In our system, however, DNA is extracted from an agarose gel in a coiled state into a solution of PEG, and coil-globule transition is induced by cations generated at the anode.
View Article and Find Full Text PDFA new method based on a combination of reverse transcription polymerase chain reaction (RT-PCR) and a water-in-oil (W/O) emulsion was developed. Reverse transcription and initial thermal cycles were carried out in droplets of the W/O emulsion. Then, the droplets were united, followed by remaining secondary PCR cycles.
View Article and Find Full Text PDFObservation and cutting of DNA molecules at intended positions permit several new experimental methods that are completely different from conventional molecular biology methods; therefore several cutting methods have been proposed and studied. In this paper, a new cutting method for a DNA molecule by localizing the activity of a restriction enzyme is presented. Since most restriction enzymes require magnesium ions for their activation, local restriction enzyme activity can be controlled by the local concentration of magnesium ions.
View Article and Find Full Text PDF