The first examples of porous molecular crystals that are assembled through Au⋅⋅⋅Au interactions of gold complex 1 are here reported along with their exchange properties with respect to their guest components. Single-crystal X-ray diffraction (XRD) analyses indicate that the crystal structure of 1/CH Cl ⋅pentane is based on cyclic hexamers of 1, which are formed through six Au⋅⋅⋅Au interactions. The packing of these cyclic hexamers affords a porous architecture, in which the one-dimensional channel segment contains CH Cl and pentane as guests.
View Article and Find Full Text PDFOne-electron oxidized salen complexes of Mn(iii) and Ni(ii) were recently reported to be unique mixed-valence compounds. Their electronic structures are sensitive to the salen ligand and solvation. We systematically investigated a series of one-electron oxidized salen complexes of group 7 metals (Mn(iii), Tc(iii), and Re(iii)) and their group 10 analogues (Ni(ii), Pd(ii), and Pt(ii)) using the general multi-configuration reference quasi-degenerate perturbation theory (GMC-QDPT) which was combined with the three-dimensional reference interaction site model self-consistent field theory (3D-RISM-SCF) to incorporate the solvation effect.
View Article and Find Full Text PDFSolvation of transition metal complexes with water has been one of the fundamental topics in physical and coordination chemistry. In particular, Pt(II) complexes have recently attracted considerable interest for their relation to anticancer activity in cisplatin and its analogues, yet the interaction of the water molecule and the metal center has been obscured. The challenge from a theoretical perspective remains that both the microscopic solvation effect and the dynamical electron correlation (DEC) effect have to be treated simultaneously in a reasonable manner.
View Article and Find Full Text PDFDespite strong electrostatic repulsion, like-charged ions in aqueous solution can effectively attract each other via ion-water interactions. In this paper we investigate such an effective interaction of like-charged ions in water by using the 3D-RISM-SCF method (i.e.
View Article and Find Full Text PDFOne-electron oxidized Mn(III)- and Ni(II)-salen complexes exhibit unique mixed-valence electronic structures and charge transfer (CT) absorption spectra. We theoretically investigated them to elucidate the reason why the Mn(III)-salen complex takes a localized electronic structure (class II mixed valence compound by Robin-Day classification) and the Ni(II)-analogue has a delocalized one (class III) in solution, where solvation effect was taken into consideration either by the three-dimensional reference interaction site model self-consistent field (3D-RISM-SCF) method or by the mean-field (MF) QM/MM-MD simulation. The geometries of these complexes were optimized by the 3D-RISM-SCF-U-DFT/M06.
View Article and Find Full Text PDFOne of the difficulties in application of the usual reference interaction site model self-consistent field (RISM-SCF) method to a highly polarized and bulky system arises from the approximate evaluation of electrostatic potential (ESP) with pure point charges. To improve this ESP evaluation, the ESP near a solute is directly calculated with a solute electronic wavefunction, that distant from a solute is approximately calculated with solute point charges, and they are connected with a switching function. To evaluate the fine solvation structure near the solute by incorporating the long-range solute-solvent Coulombic interaction with low computational cost, we introduced the dual solvent box protocol; one small box with the fine spacing is employed for the first and the second solvation shells and the other large box with the normal spacing is employed for long-range solute-solvent interaction.
View Article and Find Full Text PDFIn the three-dimensional reference interaction site model self-consistent field (3D-RISM-SCF) method, a switching function was introduced to evaluate the electrostatic potential (ESP) around the solute to smoothly connect the ESP directly calculated with the solute electronic wave function and that approximately calculated with solute point charges. Hydrolyses of cis- and transplatins, cis- and trans-PtCl(2)(NH(3))(2), were investigated with this method. Solute geometries were optimized at the DFT level with the M06-2X functional, and free energy changes were calculated at the CCSD(T) level.
View Article and Find Full Text PDFQuantum chemical solvation models usually rely on the equilibrium solvation condition and is thus not immediately applicable to the study of nonequilibrium solvation dynamics, particularly those associated with chemical reactions. Here we address this problem by considering an effective Hamiltonian for solution-phase reactions based on an electrostatic potential (ESP) representation of solvent dynamics. In this approach a general ESP field of solvent is employed as collective solvent coordinate, and an effective Hamiltonian is constructed by treating both solute geometry and solvent ESP as dynamical variables.
View Article and Find Full Text PDFFree energy profiles for the proton transfer reactions in hydrogen-bonded complex of phenol with trimethylamine in methyl chloride solvent are studied with the reference interaction site model self-consistent field method. The reactions in both the electronic ground and excited states are considered. The second-order Møller-Plesset perturbation (MP) theory or the second-order multireference MP theory is used to evaluate the effect of the dynamical electron correlation on the free energy profiles.
View Article and Find Full Text PDF