Publications by authors named "Shinji Aizawa"

Investigation of the effect of electron irradiation on ionic liquid (IL) droplets using electron holography revealed that electron irradiation changed the electrostatic potential around the IL. The potential for low electron flux irradiation (0.5 × 10(17)e/m(2)s) was almost constant as a function of time (up to 180 min).

View Article and Find Full Text PDF

This study demonstrates the accumulation of electron-induced secondary electrons by utilizing a simple geometrical configuration of two branches of a charged insulating biomaterial. The collective motion of these secondary electrons between the branches has been visualized by analyzing the reconstructed amplitude images obtained using in situ electron holography. In order to understand the collective motion of secondary electrons, the trajectories of these electrons around the branches have also been simulated by taking into account the electric field around the charged branches on the basis of Maxwell's equations.

View Article and Find Full Text PDF

Skyrmions are nanoscale spin textures that are viewed as promising candidates as information carriers in future spintronic devices. Skyrmions have been observed using neutron scattering and microscopy techniques. Real-space imaging using electrons is a straightforward way to interpret spin configurations by detecting the phase shifts due to electromagnetic fields.

View Article and Find Full Text PDF

Advanced split-illumination electron holography was developed by employing two biprisms in the illuminating system to split an electron wave into two coherent waves and two biprisms in the imaging system to overlap them. A focused image of an upper condenser-biprism filament was formed on the sample plane, and all other filaments were placed in its shadow. This developed system makes it possible to obtain precise reconstructed object waves without modulations due to Fresnel fringes, in addition to holograms of distant objects from reference waves.

View Article and Find Full Text PDF

We found that the accuracy of the phase observation in phase-shifting electron holography is strongly restricted by time variations of mean intensity and contrast of the holograms. A modified method was developed for correcting these variations. Experimental results demonstrated that the modification enabled us to acquire a large number of holograms, and as a result, the accuracy of the phase observation has been improved by a factor of 5.

View Article and Find Full Text PDF

Three-dimensional (3D) reconstruction experiments were carried out by observing high-resolution 3D electrostatic potential distributions of Pt nanoparticles using off-axis electron holographic tomography. These Pt nanoparticles were mounted on the surfaces of amorphous silicon pillars. In order to realize high-resolution observation, we developed a mechanically stable 3D specimen holder with small specimen drifts and vibrations.

View Article and Find Full Text PDF

The three-dimensional spin structure of the magnetic vortex of FeSiB, an amorphous soft magnetic material, was investigated by holography observation and computer simulation. Magnetization distribution in the neighborhood of the vortex center was estimated from the phase distribution obtained by holography observation. To confirm this magnetization distribution, sample-tilting experiments were performed: when the sample was tilted with respect to the electron beam direction, the phase-image center was found to shift along the tilting axis.

View Article and Find Full Text PDF

We developed a dedicated scanning transmission electron microscope with high-stability. The mechanical and electronic stabilities of the microscope were substantially improved, e.g.

View Article and Find Full Text PDF