Publications by authors named "Shinichi Nakakita"

Endo-β-N-acetylglucosaminidases (ENGases) are enzymes that hydrolyze N-linked glycans. Many ENGases have been characterized, but few have been identified with hydrolytic activity towards multi-branched complex-type N-glycans. In this study, three candidate ENGases were identified from Barnesiella intestinihominis based on database searches and phylogenetic analysis.

View Article and Find Full Text PDF

SARS-CoV-2 has evolved continuously and accumulated spike mutations with each variant having a different binding for the cellular ACE2 receptor. It is not known whether the interactions between such mutated spikes and ACE2 glycans are conserved among different variant lineages. Here, we focused on three ACE2 glycosylation sites (53, 90 and 322) that are geometrically close to spike binding sites and investigated the effect of their glycosylation pattern on spike affinity.

View Article and Find Full Text PDF

In general, viruses recognize host cell surface glycans, but the measurement of virus-host cell glycan interaction is not widely operated. This is not only because commercially available, structure-defined glycans are limited, but also because such interactions, if any, between viruses and isolated glycans are relatively weak, and thus, difficult to detect by conventional methods, e.g.

View Article and Find Full Text PDF

The nodes of Ranvier are unmyelinated gaps in the axon, important for the efficient transmission of action potentials. Despite the identification of several glycoproteins involved in node formation and maintenance, glycans' structure and formation in the node remain unclear. Previously, we developed a recombinant lectin from the Clostridium botulinum neurotoxin complex, specific to the galactose and N-acetylgalactosamine terminal epitopes (Gg).

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been transmitted across all over the world, in contrast to the limited epidemic of genetically- and virologically-related SARS-CoV. However, the molecular basis explaining the difference in the virological characteristics among SARS-CoV-2 and SARS-CoV has been poorly defined. Here we identified that host sialoglycans play a significant role in the efficient spread of SARS-CoV-2 infection, while this was not the case with SARS-CoV.

View Article and Find Full Text PDF

Endo-β-N-acetylglucosaminidases (ENGases) are enzymes that hydrolyze the N-linked oligosaccharides. Many ENGases have already been identified and characterized. However, there are still a few enzymes that have hydrolytic activity toward multibranched complex-type N-glycans on glycoproteins.

View Article and Find Full Text PDF

Lectins are proteins with the ability to recognize and bind to specific glycan structures. These molecules play important roles in many biological systems and are actively being studied because of their ability to detect glycan biomarkers for many diseases. Hemagglutinin (HA) proteins from Clostridium botulinum type C neurotoxin complex; HA1, HA2, and HA3 are lectins that aid in the internalization of the toxin complex by binding to glycoproteins on the cell surface.

View Article and Find Full Text PDF

In the fission yeast Schizosaccharomyces pombe, α1,2- and α1,3-linked D-galactose (Gal) residues are transferred to N- and O-linked oligosaccharides of glycoproteins by galactosyltransferases. Although the galactomannans are important for cell-cell communication in S. pombe (e.

View Article and Find Full Text PDF

We describe a method to detect influenza virus using an evanescent-field-activated fluorescence scanner type glycan array and ELISA system. Neoglycoprotein was prepared by combination of organic chemistry and biomaterial preparation. These ligands were spotted on a glass plate or plastic well to make a glycan array and ELISA plate.

View Article and Find Full Text PDF

The N- and O-linked oligosaccharides from fission yeast Schizosaccharomyces pombe not only contain large amounts of d-mannose (Man) but also contain large amounts of d-galactose (Gal). Although the galactomannans of S. pombe are mainly composed of α1,2- or α1,3-linked Gals, some of the terminal α1,2-linked Gals are found to be linked to pyruvylated β1,3-linked galactose (PvGal).

View Article and Find Full Text PDF

The galectins are a family of β-galactoside-specific animal lectins, and have attracted much attention as novel regulators of the immune system. Galectin-10 is well-expressed in eosinophils, and spontaneously forms Charcot-Leyden crystals (CLCs), during prolonged eosinophilic inflammatory reactions, which are frequently observed in eosinophilic diseases. Although biochemical and structural characterizations of galectin-10 have been done, its biological role and molecular mechanism are still unclear, and few X-ray structures of galectin-10 in complex with monosaccharides/oligosaccharides have been reported.

View Article and Find Full Text PDF

Mumps virus (MuV), an enveloped negative-strand RNA virus belonging to the family , enters the host cell through membrane fusion mediated by two viral envelope proteins, an attachment protein hemagglutinin-neuraminidase (MuV-HN) and a fusion (F) protein. However, how the binding of MuV-HN to glycan receptors triggers membrane fusion is not well understood. The crystal structure of the MuV-HN head domain forms a tetramer (dimer of dimers) like other paramyxovirus attachment proteins.

View Article and Find Full Text PDF

Graphene has strong potential for electrical biosensing owing to its two-dimensional nature and high carrier mobility which transduce the direct contact of a detection target with a graphene channel to a large conductivity change in a graphene field-effect transistor (G-FET). However, the measurable range from the graphene surface is highly restricted by Debye screening, whose characteristic length is less than 1 nm at physiological ionic strength. Here, we demonstrated electrical biosensing utilizing the enzymatic products of the target.

View Article and Find Full Text PDF

To study the structure of β-glucans, we developed a separation method and molecular library of β-glucan oligosaccharides. The oligosaccharides were prepared by partial acid hydrolysis from laminarin, which is a β-glucan of . They were labeled with the 2-aminopyridine fluorophore and separated to homogeneity by size-fractionation and reversed phase high-performance liquid chromatography (HPLC).

View Article and Find Full Text PDF

Unlabelled: The rapidly evolvable influenza A virus has caused pandemics linked to millions of deaths in the past century. Influenza A viruses are categorized by H (hemagglutinin; HA) and N (neuraminidase; NA) proteins expressed on the viral envelope surface. Analyses of past pandemics suggest that the HA gene segment comes from a nonhuman virus, which is then introduced into an immunologically naïve human population with potentially devastating consequences.

View Article and Find Full Text PDF

Objectives: To establish an efficient method of chemoenzymatic modification for making N-linked oligosaccharide chains of glycoproteins structurally homogeneous, which crucially affects their bioactivities.

Results: Deglycosylated-RNase B (GlcNAc-RNase B; acceptor), sialylglyco (SG)-oxazoline (donor) and an N180H mutant of Coprinopsis cinerea endo-β-N-acetylglucosaminidase (Endo-CC) were employed. pH 7.

View Article and Find Full Text PDF

Mumps virus (MuV) remains an important pathogen worldwide, causing epidemic parotitis, orchitis, meningitis, and encephalitis. Here we show that MuV preferentially uses a trisaccharide containing α2,3-linked sialic acid in unbranched sugar chains as a receptor. Crystal structures of the MuV attachment protein hemagglutinin-neuraminidase (MuV-HN) alone and in complex with the α2,3-sialylated trisaccharide revealed that in addition to the interaction between the MuV-HN active site residues and sialic acid, other residues, including an aromatic residue, stabilize the third sugar of the trisaccharide.

View Article and Find Full Text PDF

Pyruvylation onto the terminus of oligosaccharide, widely seen from prokaryote to eukaryote, confers negative charges on the cell surface and seems to be functionally similar to sialylation, which is found at the end of human-type complex oligosaccharide. However, detailed molecular mechanisms underlying pyruvylation have not been clarified well. Here, we first determined the crystal structure of fission yeast pyruvyltransferase Pvg1p at a resolution of 2.

View Article and Find Full Text PDF

Free oligosaccharides that are structurally related to N-glycans [free N-glycans (FNGs)] are widely distributed in the cytosol of animal cells. The diverse molecular mechanisms responsible for the formation of these FNGs have been well clarified. In this study we demonstrate the wide occurrence of sialylated FNGs in sera of various animals.

View Article and Find Full Text PDF