Modulating autophagy and mitophagy, vital cellular quality control systems, offer therapeutic potential for critical illnesses. However, limited drug screening options hinder progress. We present a novel assay using the photoswitchable fluorescent reporter, mito-Kaede, to quantify mitophagy flux.
View Article and Find Full Text PDFBackground: Opioid activation of the microglia or macrophage Toll-like receptor 4 (TLR4) and associated inflammatory cytokine release are implicated in opioid-induced hyperalgesia and tolerance. The cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS-STING) signaling pathway, activated by double-stranded DNA including mitochondrial DNA (mtDNA), has emerged as another key mediator of inflammatory responses. This study tested the hypothesis that morphine induces immune inflammatory responses in microglia and macrophages involving TLR4 and cGAS-STING pathway.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2021
Sepsis remains a leading cause of mortality in critically ill patients. Muscle wasting is a major complication of sepsis and negatively affects clinical outcomes. Despite intense investigation for many years, the molecular mechanisms underlying sepsis-related muscle wasting are not fully understood.
View Article and Find Full Text PDFPulmonary immunosuppression often occurs after burn injury (BI). However, the reasons for BI-induced pulmonary immunosuppression are not clearly understood. Neutrophil recruitment and neutrophil extracellular trap (NET) formation (NETosis) are important components of a robust pulmonary immune response, and we hypothesized that pulmonary inflammation and NETosis are defective after BI.
View Article and Find Full Text PDFMitochondrial dysfunction is associated with metabolic alterations in various disease states, including major trauma (e.g., burn injury).
View Article and Find Full Text PDFIntroduction: Burn injury (BI) leads to both systemic and neuro-inflammation and is associated with muscle wasting and weakness, which increase morbidity and mortality. Disuse atrophy is concomitantly present in BI patients. Most studies have focused on muscle with little attention to role of central nervous system (CNS) in the neuromuscular changes.
View Article and Find Full Text PDFMetabolic derangements are a clinically significant complication of major trauma (e.g., burn injury) and include various aspects of metabolism, such as insulin resistance, muscle wasting, mitochondrial dysfunction and hyperlactatemia.
View Article and Find Full Text PDFInflammation and apoptosis develop in skeletal muscle after major trauma, including burn injury, and play a pivotal role in insulin resistance and muscle wasting. We and others have shown that inducible nitric oxide synthase (iNOS), a major mediator of inflammation, plays an important role in stress (e.g.
View Article and Find Full Text PDFIntroduction: Muscle wasting (MW) in catabolic conditions (e.g., burn injury [BI]) is a major risk factor affecting prognosis.
View Article and Find Full Text PDFIntroduction: Skeletal muscle wasting and weakness with mitochondrial dysfunction (MD) are major pathological problems in burn injury (BI) patients. Fibrinogen levels elevated in plasma is an accepted risk factor for poor prognosis in many human diseases, and is also designated one of damage-associated molecular pattern (DAMPs) proteins. The roles of upregulated fibrinogen on muscle changes of critical illness including BI are unknown.
View Article and Find Full Text PDFOxidative stress induces mitochondrial dysfunction and facilitates apoptosis, tissue damage or metabolic alterations following infection. We have previously discovered that the Pseudomonas aeruginosa (PA) quorum sensing (QS)-excreted small volatile molecule, 2-aminoacetophenone (2-AA), which is produced in infected human tissue, promotes bacterial phenotypes that favor chronic infection, while also dampening the pathogen‑induced innate immune response, thus compromising muscle function and promoting host tolerance to infection. In this study, murine whole-genome expression data have demonstrated that 2-AA affects the expression of genes involved in reactive oxygen species (ROS) homeostasis, thus producing an oxidative stress signature in skeletal muscle.
View Article and Find Full Text PDFBackground: It has been known that skeletal muscles show atrophic changes after prolonged sedation or general anesthesia. Whether these effects are due to anesthesia itself or disuse during anesthesia has not been fully clarified. Autophagy dysregulation has been implicated in muscle-wasting conditions.
View Article and Find Full Text PDFBackground: The acetylcholinesterase inhibitor, pyridostigmine, is prophylactically administered to mitigate the toxic effects of nerve gas poisoning. The authors tested the hypothesis that prolonged pyridostigmine administration can lead to neuromuscular dysfunction and even down-regulation of acetylcholine receptors.
Methods: Pyridostigmine (5 or 25 mg·kg·day) or saline was continuously administered via osmotic pumps to rats, and infused for either 14 or 28 days until the day of neuromuscular assessment (at day 14 or 28), or discontinued 24 h before neuromuscular assessment.
Skeletal muscle wasting is an exacerbating factor in the prognosis of critically ill patients. Using a systemic burn injury model in mice, we have established a role of autophagy in the resulting muscle wasting that is distant from the burn trauma. We provide evidence that burn injury increases the autophagy turnover in the distal skeletal muscle by conventional postmortem tissue analyses and by a novel in vivo microscopic method using an autophagy reporter gene (tandem fluorescent LC3).
View Article and Find Full Text PDFBackground: Nerve-stimulated fade in muscle is generally accepted as a prejunctional phenomenon mediated by block of prejunctional acetylcholine receptors (AChRs) at the nerve terminal, whereas decrease of twitch tension is considered a postjunctional effect due to block of muscle AChRs. Using ligands with specific pre- or postjunctional effects only, we tested the hypothesis that fade is not necessarily a prejunctional phenomenon.
Methods: Neuromuscular function in rats was evaluated after IM (2.
Introduction: Immobilization by casting induces disuse muscle atrophy (DMA).
Methods: Using wild type (WT) and caspase-3 knockout (KO) mice, we evaluated the effect of caspase-3 on muscle mass, apoptosis, and inflammation during DMA.
Results: Caspase-3 deficiency significantly attenuated muscle mass decrease [gastrocnemius: 28 ± 1% in KO vs.
Objectives: Recent studies suggest that activation of glycogen synthase kinase (GSK)-3β may be involved in burn injury-induced metabolic derangements and protein breakdown in skeletal muscle. However, the mechanism for GSK-3β activation after burn injury is unknown. To investigate the role of inducible nitric oxide synthase (iNOS) in this scenario, a major mediator of inflammation, we examined the effects of a specific inhibitor for iNOS, L-NIL, on GSK-3β activity in skeletal muscle of burned rats.
View Article and Find Full Text PDFBurn injury is associated with inflammatory responses and metabolic alterations including insulin resistance. Impaired insulin receptor substrate-1 (IRS-1)-mediated insulin signal transduction is a major component of insulin resistance in skeletal muscle following burn injury. To further investigate molecular mechanisms that underlie burn injury-induced insulin resistance, we study a role of inducible nitric oxide synthase (iNOS), a major mediator of inflammation, on burn-induced muscle insulin resistance in iNOS-deficient mice.
View Article and Find Full Text PDFPurpose: To develop novel magnetic resonance (MR) imaging methods to monitor accumulation of macrophages in inflammation and infection. Positive-contrast MR imaging provides an alternative to negative-contrast MRI, exploiting the chemical shift induced by ultra-small superparamagnetic iron-oxide (USPIO) nanoparticles to nearby water molecules. We introduce a novel combination of off-resonance (ORI) positive-contrast MRI and T(2ρ) relaxation in the rotating frame (ORI-T(2ρ)) for positive-contrast MR imaging of USPIO.
View Article and Find Full Text PDFBackground: Regulatory factors and detailed physiology of in vivo microcirculation have remained not fully clarified after many different modalities of imaging had invented. While many macroscopic parameters of blood flow reflect flow velocity, changes in blood flow velocity and red blood cell (RBC) flux does not hold linear relationship in the microscopic observations. There are reports of discrepancy between RBC velocity and RBC flux, RBC flux and plasma flow volume, and of spatial and temporal heterogeneity of flow regulation in the peripheral tissues in microscopic observations, a scientific basis for the requirement of more detailed studies in microcirculatory regulation using intravital microscopy.
View Article and Find Full Text PDFObesity is a major cause of type 2 diabetes, clinically evidenced as hyperglycemia. The altered glucose homeostasis is caused by faulty signal transduction via the insulin signaling proteins, which results in decreased glucose uptake by the muscle, altered lipogenesis, and increased glucose output by the liver. The etiology of this derangement in insulin signaling is related to a chronic inflammatory state, leading to the induction of inducible nitric oxide synthase and release of high levels of nitric oxide and reactive nitrogen species, which together cause posttranslational modifications in the signaling proteins.
View Article and Find Full Text PDFDying cells are distinguished by their biochemical and morphologic traits and categorized into three subtypes: apoptosis, oncosis (necrosis), and cell death with autophagy. Each of these types of cell death plays critical roles in tissue morphogenesis during normal development and in the pathogenesis of human diseases. Given that tissue homeostasis is controlled by the intricate balance between degeneration and regeneration, it is essential to understand the mechanisms of different forms of cell death to establish and improve therapeutic interventions for prevention and rescue of these cell death-related disorders.
View Article and Find Full Text PDF