Publications by authors named "Shingo Yamasaki"

Abnormal hepatic insulin signaling is a cause or consequence of hepatic steatosis. DPP-4 inhibitors might be protective against fatty liver. We previously reported that the systemic inhibition of insulin receptor (IR) and IGF-1 receptor (IGF1R) by the administration of OSI-906 (linsitinib), a dual IR/IGF1R inhibitor, induced glucose intolerance, hepatic steatosis, and lipoatrophy in mice.

View Article and Find Full Text PDF

Gamma-secretase modulators (GSMs) selectively lower amyloid-β42 (Aβ42) and are therefore potential disease-modifying drugs for Alzheimer's disease (AD). Here, we report the discovery of imidazopyridine derivatives as GSMs with oral activity on not only Aβ42 levels but also cognitive function. Structural optimization of the biphenyl group and pyridine-2-amide moiety of compound 1a greatly improved GSM activity and rat microsomal stability, respectively.

View Article and Find Full Text PDF

Metabolic programs are rewired in cancer cells to support survival and tumor growth. Among these, recent studies have demonstrated that glutamate-oxaloacetate transaminase 1 (GOT1) plays key roles in maintaining redox homeostasis and proliferation of pancreatic ductal adenocarcinomas (PDA). This suggests that small molecule inhibitors of GOT1 could have utility for the treatment of PDA.

View Article and Find Full Text PDF

Gamma-secretase modulators (GSMs) are promising disease-modifying drugs for Alzheimer's disease because they can selectively decrease pathogenic amyloid-β42 (Aβ42) levels. Here we report the discovery of orally active N-ethylpyridine-2-carboxamide derivatives as GSMs. The isoindolinone moiety of 5-[8-(benzyloxy)-2-methylimidazo[1,2-a]pyridin-3-yl]-2-ethyl-2,3-dihydro-1H-isoindol-1-one hydrogen chloride (1a) was replaced with a picolinamide moiety.

View Article and Find Full Text PDF

Gamma-secretase modulators (GSMs) selectively inhibit the production of amyloid-β 42 (Aβ42) and may therefore be useful in the management of Alzheimer's disease. Most heterocyclic GSMs that are not derived from nonsteroidal anti-inflammatory drugs contain an arylimidazole moiety that potentially inhibits cytochrome P450 (CYP) activity. Here, we discovered imidazopyridine derivatives that represent a new class of scaffold for GSMs, which do not have a strongly basic end group such as arylimidazole.

View Article and Find Full Text PDF

γ-Secretase is the enzyme responsible for the intramembranous proteolysis of various substrates, such as amyloid precursor protein (APP) and Notch. Amyloid-β peptide 42 (Aβ42) is produced through the sequential proteolytic cleavage of APP by β- and γ-secretase and causes the synaptic dysfunction associated with memory impairment in Alzheimer's disease. Here, we identified a novel cyclohexylamine-derived γ-secretase modulator, {(1R*,2S*,3R*)-3-[(cyclohexylmethyl)(3,3-dimethylbutyl)amino]-2-[4-(trifluoromethyl)phenyl]cyclohexyl}acetic acid (AS2715348), that may inhibit this pathological response.

View Article and Find Full Text PDF

Starting with a series of CC chemokine receptor-4 (CCR4) antagonists developed in a previous study, the potency was improved by replacing the pyrrolidine moiety of N-(4-chlorophenyl)-6,7-dimethoxy-2-(4-pyrrolidin-1-ylpiperidin-1-yl)quinazolin-4-amine 2 with a 3-(hydroxymethyl)piperidine. The resulting compound (1'-{4-[(4-chlorophenyl)amino]-6,7-dimethoxyquinazolin-2-yl}-1,4'-bipiperidin-3-yl)methanol 8ic was a strong inhibitor of human/mouse chemotaxis. Oral administration of 8ic showed anti-inflammatory activity in a murine model of acute dermatitis (oxazolone-induced contact hypersensitivity test) in a dose-dependent manner.

View Article and Find Full Text PDF

A general and mild catalytic allylation of carbonyl compounds, applicable to aldehydes, ketones, and imines is developed using allyltrimethoxysilane as the allylating reagent. The reaction proceeds smoothly with 1-10 mol % of CuCl and TBAT in THF at ambient temperature. Mechanism studies indicated that the copper alkoxide, allylfluorodimethoxysilane, and allyltrimethoxysilane are essential to promote the reaction efficiently.

View Article and Find Full Text PDF