Darwin's naturalization hypothesis predicts that the success of alien invaders will decrease with increasing taxonomic similarity to the native community. Alternatively, shared traits between aliens and the native assemblage may preadapt aliens to their novel surroundings, thereby facilitating establishment (the preadaptation hypothesis). Here we examine successful and failed introductions of amphibian species across the globe and find that the probability of successful establishment is higher when congeneric species are present at introduction locations and increases with increasing congener species richness.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2011
In classical evolutionary theory, traits evolve because they facilitate organismal survival and/or reproduction. We discuss a different type of evolutionary mechanism that relies upon differential dispersal. Traits that enhance rates of dispersal inevitably accumulate at expanding range edges, and assortative mating between fast-dispersing individuals at the invasion front results in an evolutionary increase in dispersal rates in successive generations.
View Article and Find Full Text PDFHigher rates of dispersal in one sex than the other are widespread, and often attributed to the genetic advantages of reduced inbreeding. The direction of sex-biased dispersal shows strong phylogenetic conservatism (e.g.
View Article and Find Full Text PDFThe sea snake subfamily Laticaudinae consists of a single genus with eight named species, based on morphological characters. We used microsatellite and mitochondrial DNA (mtDNA) data to clarify the adaptive radiation of these oviparous sea snakes in the South Pacific, with special reference to New Caledonia and Vanuatu. A mitochondrial DNA data set (ND4 gene 793 bp) was obtained from 345 individuals of the five species of Laticauda sp.
View Article and Find Full Text PDFWe investigated morphological adaptations to aquatic life within animals that exhibit a structurally simple, elongate body form, i.e., snakes.
View Article and Find Full Text PDFMechanistic species distribution models (SDMs) are ideally suited for predicting the nonnative distributions of invasive species, but require accurate parameterization of key functional traits. Importantly, any ability of the invader to acclimate or adapt rapidly to local conditions must be incorporated. Our field and laboratory studies measured phenotypic variation and tested for plasticity in the thermal sensitivity of locomotor performance and low-temperature tolerance of adult cane toads Bufo marinus in eastern Australia.
View Article and Find Full Text PDFIn many reptiles, the thermal regimes experienced by eggs in natural nests vary as a function of ambient weather and location, and this variation has important impacts on patterns of embryonic development. Recent advances in non-invasive measurement of embryonic heart rates allow us to answer a long-standing puzzle in reptilian developmental biology: Do the metabolic and developmental rates of embryos acclimate to local incubation regimes, as occurs for metabolic acclimation by post-hatching reptiles? Based on a strong correlation between embryonic heart rate and oxygen consumption, we used heart rates as a measure of metabolic rate. We demonstrate acclimation of heart rates relative to temperature in embryos of one turtle, one snake and one lizard species that oviposit in relatively deep nests, but found no acclimation in another lizard species that uses shallow (and hence, highly thermally variable) nests.
View Article and Find Full Text PDFThe challenges posed by parasites and pathogens evoke behavioral as well as physiological responses. Such behavioral responses are poorly understood for most ectothermic species, including anuran amphibians. We quantified effects of simulated infection (via injection of bacterial lipopolysaccharide [LPS]) on feeding, activity, and thermoregulation of cane toads Bufo marinus within their invasive range in tropical Australia.
View Article and Find Full Text PDFMany parasites affect the viability of their hosts, but detailed studies combining empirical data from both the field and the laboratory are limited. Consequently, the nature and magnitude of such effects are poorly known for many important host-parasite systems, including macroparasites of amphibians. We examined the effects of lungworm (Rhabdias pseudosphaerocephala) infections in cane toads (Bufo marinus) within their invasive Australian range.
View Article and Find Full Text PDFHost-parasite systems have often evolved over time, such that infection dynamics may become greatly modified from the time of initial contact of the host with the parasite. Biological invasions may be useful to clarify processes in the initial contact of hosts with parasites, and allow us to compare parasite uptake between the ancestral (coevolved) host and novel (noncoevolved) hosts. Cane toads (Bufo marinus) are spreading rapidly through tropical Australia, carrying with them a nematode lungworm (Rhabdias pseudosphaerocephala) congeneric with those found in Australian frogs.
View Article and Find Full Text PDFPhenotypic traits of hatchling reptiles are strongly influenced by incubation regimes (e.g. of temperature and moisture), suggesting that maternal choice of suitable nest-sites should be under intense selection.
View Article and Find Full Text PDFHuman activities are changing habitats and climates and causing species' ranges to shift. Range expansion brings into play a set of powerful evolutionary forces at the expanding range edge that act to increase dispersal rates. One likely consequence of these forces is accelerating rates of range advance because of evolved increases in dispersal on the range edge.
View Article and Find Full Text PDFAlthough invasive species are viewed as major threats to ecosystems worldwide, few such species have been studied in enough detail to identify the pathways, magnitudes, and timescales of their impact on native fauna. One of the most intensively studied invasive taxa in this respect is the cane toad (Bufo marinus), which was introduced to Australia in 1935. A review of these studies suggests that a single pathway-lethal toxic ingestion of toads by frog-eating predators-is the major mechanism of impact, but that the magnitude of impact varies dramatically among predator taxa, as well as through space and time.
View Article and Find Full Text PDFBackground: Relatively recent (Plio-Pleistocene) climatic variations had strong impacts on the fauna and flora of temperate-zone North America and Europe; genetic analyses suggest that many lineages were restricted to unglaciated refuges during this time, and have expanded their ranges since then. Temperate-zone Australia experienced less severe glaciation, suggesting that patterns of genetic structure among species may reflect older (aridity-driven) divergence events rather than Plio-Pleistocene (thermally-mediated) divergences. The lizard genus Bassiana (Squamata, Scincidae) contains three species that occur across a wide area of southern Australia (including Tasmania), rendering them ideally-suited to studies on the impact of past climatic fluctuations.
View Article and Find Full Text PDFThe duration of embryonic development (e.g., egg incubation period) is a critical life-history variable because it affects both the amount of time that an embryo is exposed to conditions within the nest and the seasonal timing of hatching.
View Article and Find Full Text PDFIn many animals, temperatures experienced by developing embryos determine offspring sex (e.g. temperature-dependent sex determination, TSD), but most studies focus strictly on the effects of mean temperature, with little emphasis on the importance of thermal fluctuations.
View Article and Find Full Text PDFDespite controversy over alternative definitions, the species is the fundamental operational unit of biodiversity, and species are the building-blocks of conservation. But is a 'species' from one part of the world the same as a 'species' from elsewhere? Our meta-analysis of molecular phylogenetic data reveals that reptile and amphibian species distributed in temperate-zone areas of the Northern Hemisphere are younger than taxa from the Southern Hemisphere, probably reflecting the greater impact of past climatic variation on Northern Hemisphere habitats. Because a species' age may influence its vulnerability to anthropogenic threats, geographical variation in species ages should be incorporated into conservation planning.
View Article and Find Full Text PDFJ Evol Biol
September 2010
Pupil shape in vertebrates ranges from circular to vertical, with multiple phylogenetic shifts in this trait. Our analyses challenge the widely held view that the vertical pupil evolved as an adaptation to enhance night vision. On functional grounds, a variable-aperture vertical pupil (i) allows a nocturnal species to have a sensitive retina for night vision but avoid dazzle by day by adjusting pupil closure, and (ii) increases visual acuity by day, because a narrow vertical pupil can project a sharper image onto the retina in the horizontal plane.
View Article and Find Full Text PDFMost evolutionary theory does not deal with populations expanding or contracting in space. Invasive species, climate change, epidemics, and the breakdown of dispersal barriers, however, all create populations in this kind of spatial disequilibrium. Importantly, spatial disequilibrium can have important ecological and evolutionary outcomes.
View Article and Find Full Text PDFThe genus Drysdalia contains three recognised species of elapid (front-fanged) snakes, distributed across south-eastern Australia (including Tasmania). Here we aim to clarify the biogeography and phylogeographical relationships of this poorly documented region. We conducted molecular phylogenetic and dating analyses, using mitochondrial genes (ND4 and cyt-b).
View Article and Find Full Text PDFThe process of rapid range expansion (as seen in many invasive species, and in taxa responding to climate change) may substantially disrupt host-parasite dynamics. Parasites and pathogens can have strong regulatory effects on their host population and, in doing so, exert selection pressure on host life history. We construct a simple individual-based model of host-parasite dynamics during range expansion.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
August 2010
In natural nests, the eggs of squamate reptiles (lizards and snakes) sometimes experience unpredictable shifts in oxygen availability as a function of nest flooding, or the details of egg location within a nest. We experimentally investigated whether embryos can facultatively adjust cardiac function to cope with such challenges by imposing regional hypoxia on developing eggs of the scincid lizard Bassiana duperreyi. To do so, we sealed half of the eggshell surface with tissue adhesive.
View Article and Find Full Text PDFEvolutionary transitions from terrestrial to aquatic life modify selective forces on an animal's coloration. For example, light penetrates differently through water than air, and a new suite of predators and visual backgrounds changes the targets of selection. We suggest that an aquatic animal's coloration may also affect its susceptibility to algal fouling.
View Article and Find Full Text PDFIn ectotherms such as turtles, the relationship between cardiovascular function and temperature may be subject to different selective pressures in different life-history stages. Because embryos benefit by developing as rapidly as possible, and can "afford" to expend energy to do so (because they have access to the yolk for nutrition), they benefit from rapid heart (and thus, developmental) rates. In contrast, hatchlings do not have a guaranteed food supply, and maximal growth rates may not enhance fitness--and so, we might expect a lower heart rate, especially at high temperatures where metabolic costs are greatest.
View Article and Find Full Text PDFMany organisms can adjust their phenotypes to match local environmental conditions via shifts in developmental trajectories, rather than relying on changes in gene frequencies wrought by natural selection. Adaptive developmental plasticity confers obvious benefits in terms of rapid response and higher mean fitness, so why is it not more common? Plausibly, adaptive plasticity also confers a cost; reshaping the phenotype takes time and energy, so that canalised control of trait values enhances fitness if the optimal phenotype remains the same from one generation to the next. Although this idea is central to interpreting the fitness consequences of adaptive plasticity, empirical data on costs of plasticity are scarce.
View Article and Find Full Text PDF