The high prevalence of cardiac diseases around the world has created a need for quick, easy and cost effective approaches to diagnose heart disease. The auscultation and interpretation of heart sounds using the stethoscope is relatively inexpensive, requires minimal to advanced training, and is widely available and easily carried by healthcare providers working in urban environments or medically underserved rural areas. Since René-Théophile-Hyacinthe Laennec's simple, monoaural design, the capabilities of modern-day, commercially available stethoscopes and stethoscope systems have radically advanced with the integration of electronic hardware and software tools, however these systems are largely confined to the metropolitan medical centers.
View Article and Find Full Text PDFEnviron Monit Assess
November 2020
Contamination from pesticides and nitrate in groundwater is a significant threat to water quality in general and agriculturally intensive regions in particular. Three widely used machine learning models, namely, artificial neural networks (ANN), support vector machines (SVM), and extreme gradient boosting (XGB), were evaluated for their efficacy in predicting contamination levels using sparse data with non-linear relationships. The predictive ability of the models was assessed using a dataset consisting of 303 wells across 12 Midwestern states in the USA.
View Article and Find Full Text PDF