Publications by authors named "Shinde U"

Extracellular vesicles (EVs) are nanoscale, membrane-enclosed structures released by cells into the extracellular milieu. These vesicles encapsulate a diverse array of molecular constituents, including nucleic acids, proteins, and lipids, which provide insights into the physiological or pathological conditions of their parent cells. Despite their potential, the study of EV-derived DNA (EV-DNA) has gathered relatively limited attention.

View Article and Find Full Text PDF

The rare disease Familial Hyperkalemic Hypertension (FHHt) is caused by mutations in the genes encoding Cullin 3 (CUL3), Kelch-Like 3 (KLHL3), and two members of the With-No-Lysine [K] (WNK) kinase family, WNK1 and WNK4. In the kidney, these mutations ultimately cause hyperactivation of NCC along the renal distal convoluted tubule. Hypertension results from increased NaCl retention, and hyperkalemia by impaired K secretion by downstream nephron segments.

View Article and Find Full Text PDF

Protein-protein interactions underpin nearly all biological processes, and understanding the molecular mechanisms that govern these interactions is crucial for the progress of biomedical sciences. The emergence of artificial intelligence-driven computational tools can help reshape the methods of structural biology; however, model data often require empirical validation. The large scale of predictive modeling data will therefore benefit from optimized methodologies for the high-throughput biochemical characterization of protein-protein interactions.

View Article and Find Full Text PDF

Introduction: Preeclampsia (PE) is a pregnancy complication marked by high blood pressure, posing risk to maternal and fetal health. "Genomic imprinting", an epigenetic phenomenon regulated by DNA methylation at Differently Methylated Regions (DMR's), influences placental development. Research on circulating extracellular vesicles (EVs) in PE suggests them as potential source for early biomarkers, but methylation status of EV-DNA in Preeclampsia is not reported yet.

View Article and Find Full Text PDF

The ROS1 receptor tyrosine kinase (RTK) possesses the largest extracellular amino-terminal domain (ECD) among the human RTK family, yet the mechanisms regulating its activation are not fully understood. While chimeric ROS1 fusion proteins, resulting from chromosomal rearrangements, are well-known oncogenic drivers, their activation mechanisms also remain underexplored. To elucidate the role of the ROS1 ECD in catalytic regulation, we engineered a series of amino-terminal deletion mutants.

View Article and Find Full Text PDF

The Mycobacterium tuberculosis (Mtb) cell envelope provides a protective barrier against the immune response and antibiotics. The mycobacterial membrane protein large (MmpL) family of proteins export cell envelope lipids and siderophores; therefore, these proteins are important for the basic biology and pathogenicity of Mtb. In particular, MmpL3 is essential and a known drug target.

View Article and Find Full Text PDF

The study explored DC. for mosquito larvicidal potential by performing bioactivity-guided chemical investigation of its root extract resulting in isolation of the known bioactive metabolite glaucarubinone (). Mosquito larvicidal activity of glaucarubinone () against the three vector species viz.

View Article and Find Full Text PDF

The error correction model's main purpose in heavy hexagonal quantum codes is to improve their reliability for quantum computing applications. Existing challenges include finding the optimal decoder for quantum error correction in heavy hexagonal codes. This research propels the frontier of quantum error correction, with a specific focus on tailoring topological quantum error-correcting codes for the unique challenges posed by superconducting qubits in quantum computers.

View Article and Find Full Text PDF

(Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism.

View Article and Find Full Text PDF

Problem: Early-onset preeclampsia (EOPE) is a severe gestational hypertensive disorder with significant feto-maternal morbidity and mortality due to uteroplacental insufficiency. Circulating extracellular vesicles of placental origin (EV-P) are known to be involved in the pathophysiology of EOPE and might serve as an ideal reservoir for its specific biomarkers. Therefore, we aimed to characterize and perform comparative proteomics of circulating EV-P from healthy pregnant and EOPE women before delivery.

View Article and Find Full Text PDF

The present study investigated the feasibility of fabricating self-assembled liposomes, LeciPlex®, a phospholipid-based vesicular nanocarrier using cationic, anionic, and nonionic stabilizers. The phospholipid investigated was soy phosphatidylcholine and the nano-precipitation method based on solvent diffusion was applied as the fabrication technique of liposomes in this study. The effects of various formulation variables, such as lipid and stabilizer concentration, total solid concentration, and solvent type on the self-assembly of vesicles were studied for physical characterization including particle size analysis, differential scanning calorimetry, viscosity, optical transmittance, transmission electron microscopy, and small angle neutron scattering.

View Article and Find Full Text PDF

In Brief: Circulating extracellular vesicles of placental/amniochorionic origin carry placental/amniochorionic proteins and nucleic acids with the potential to facilitate non-invasive diagnosis of pregnancy-related disorders. The study reports an improvised method for the enriched isolation of extracellular vesicles of placental/amniochorionic origin using the two markers, PLAP and HLA-G.

Abstract: Extracellular vesicles (EVs) are membrane-bound nanovesicles secreted from the cells into extracellular space and body fluids.

View Article and Find Full Text PDF

Pre-eclampsia (PE), a multifactorial de novo hypertensive pregnancy disorder, is one of the leading causes of foeto-maternal morbidity and mortality. Currently, antihypertensive drugs are the first-line therapy for PE and evidence suggests that low-dose aspirin initiated early in high risk pregnancies may reduce the risk of development or severity of PE. However, an early prediction of this disorder remains an unmet clinical challenge.

View Article and Find Full Text PDF

(Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism.

View Article and Find Full Text PDF

ROS1 is the largest receptor tyrosine kinase in the human genome. Rearrangements of the ROS1 gene result in oncogenic ROS1 kinase fusion proteins that are currently the only validated biomarkers for targeted therapy with ROS1 TKIs in patients. While numerous somatic missense mutations in ROS1 exist in the cancer genome, their impact on catalytic activity and pathogenic potential is unknown.

View Article and Find Full Text PDF

Genetic tags are transformative tools for investigating the function, localization, and interactions of cellular proteins. Most studies today are reliant on selective labeling of more than one protein to obtain comprehensive information on a protein's behavior in situ. Some proteins can be analyzed by fusion to a protein tag, such as green fluorescent protein, HaloTag, or SNAP-Tag.

View Article and Find Full Text PDF

The RNA exosome is an essential 3' to 5' exoribonuclease complex that mediates degradation, processing and quality control of virtually all eukaryotic RNAs. The nucleolar RNA exosome, consisting of a nine-subunit core and a distributive 3' to 5' exonuclease EXOSC10, plays a critical role in processing and degrading nucleolar RNAs, including pre-rRNA. However, how the RNA exosome is regulated in the nucleolus is poorly understood.

View Article and Find Full Text PDF

Background: Dry powder inhaler is a popular approach to pulmonary drug delivery to treat tuberculosis. Spray dried Nanoparticles using lactose carrier is extensively used for pulmonary drug delivery. Though lactose nanoparticles show deep lung deposition, they fail to uniformly disperse nanoparticles in its original form in alveoli.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is diagnosed with the deposition of insoluble β-amyloid (Aβ) peptides in the neuropil of the brain leading to dementia. The extracellular deposition of the fibrillar Aβ peptide on the neurons is known as senile plaques. Therefore, Aβ degradation and clearance from the human body is a promising therapeutic approach in the medication of AD.

View Article and Find Full Text PDF

Targeted-drug administration to liver reduces side effects by minimising drug distribution to non-target organs and increases therapeutic efficacy by boosting drug concentration in target cells. In this study, arabinogalactan-(AG), pullulan-(PL) and lactobionic acid-(LA) were selected as natural ligands to target asialoglycoprotein receptor-(ASGPR-1) present on hepatocytes. In silico docking studies were performed and binding affinities of novel ligands viz.

View Article and Find Full Text PDF
Article Synopsis
  • ROS1 fusion proteins are important cancer drivers due to chromosomal rearrangements and can lead to resistance against targeted therapies like entrectinib, lorlatinib, and repotrectinib in non-small cell lung cancer (NSCLC).
  • A study using mutagenesis identified the ROS1 mutation as a frequent cause of resistance to entrectinib and lorlatinib, highlighting the challenge of effective treatment.
  • ROS1 mutations exhibit broad resistance to type I inhibitors but show sensitivity to type II inhibitors, suggesting that developing selective type II inhibitors or alternating between different types may improve the effectiveness and longevity of treatment.
View Article and Find Full Text PDF

Inherited predisposition to myeloid malignancies is more common than previously appreciated. We analyzed the whole-exome sequencing data of paired leukemia and skin biopsy samples from 391 adult patients from the Beat AML 1.0 consortium.

View Article and Find Full Text PDF

The oral bioavailability of curcumin is limited, attributed to its low solubility or dissolution and poor absorption. Herein, the study describes formulation of curcumin-loaded mixed micelles of Gelucire® 48/16 and TPGS for its dissolution rate enhancement. Curcumin was dispersed in these molten lipidic surfactants which was then adsorbed on carrier and formulated as pellets by extrusion spheronization.

View Article and Find Full Text PDF

A dopamine D2 receptor mutation was recently identified in a family with a novel hyperkinetic movement disorder. Compared to the wild type D2 receptor, the novel allelic variant D2-IF activates a Gαβγ heterotrimer with higher potency and modestly enhanced basal activity in human embryonic kidney (HEK) 293 cells and has decreased capacity to recruit arrestin3. We now report that omitting overexpressed G protein-coupled receptor kinase-2 (GRK2) decreased the potency and efficacy of quinpirole for arrestin recruitment.

View Article and Find Full Text PDF