Publications by authors named "Shinchen Hou"

SARS-CoV-2 infection is initiated by Spike glycoprotein binding to the human angiotensin-converting enzyme 2 (ACE2) receptor via its receptor binding domain. Blocking this interaction has been proven to be an effective approach to inhibit virus infection. Here we report the discovery of a neutralizing nanobody named VHH60, which was directly produced from an engineering nanobody library based on a commercialized nanobody within a very short period.

View Article and Find Full Text PDF
Article Synopsis
  • Receptors and their ligands are crucial in about one-third of drugs on the market, and this study explores a method to develop antibodies that influence the signaling of these receptors.
  • Researchers focused on CXCR2, a type of G-protein coupled receptor, and successfully selected a highly effective antibody that binds to a specific region of the receptor using a small antibody library.
  • The findings suggest that this antibody can inhibit neutrophil movement linked to various diseases, indicating its potential as a therapeutic agent similar to anti-TNF antibodies, but with a unique approach by targeting the receptor itself rather than the ligand.
View Article and Find Full Text PDF

Interleukin-1β (IL-1β) is a potent pleiotropic cytokine playing a central role in protecting cells from microbial pathogen infection or endogenous stress. After it binds to IL-1RI and recruits IL-1 receptor accessory protein (IL-1RAcP), signaling culminates in activation of NF-κB. Many pathophysiological diseases have been attributed to the derailment of IL-1β regulation.

View Article and Find Full Text PDF

The therapeutic efficacy of an antibody drug depends on the variable domains and on the constant crystallizable fragment (Fc). IgG variable domains have been the targets of extensive molecular engineering in search of more specific binders with higher affinities for their targets. Similarly, Fc engineering approaches have led to modulating both the immune effector responses and serum half-lives of therapeutic antibodies.

View Article and Find Full Text PDF
Article Synopsis
  • Demand for monoclonal antibodies (mAbs) is rising in research and medicine, with hybridoma technology being the traditional method since the 1970s.
  • Phage display methods have emerged as a viable alternative, especially after the approval of Humira in 2002, which is phage-derived and treats rheumatoid arthritis.
  • The protocol outlined describes how to construct synthetic phage-displayed Fab libraries, detailing steps like preparing electro-competent cells, DNA extraction, mutagenesis, electroporation, and evaluating the libraries' diversity using ELISA and DNA sequencing.
View Article and Find Full Text PDF
Article Synopsis
  • Immunotoxins are antibody-based treatments that rely on specific antibody fragments to target molecules on cell surfaces for effective therapy.
  • The study developed a high-throughput cytotoxicity screening method to identify effective synthetic antibody fragments that can deliver toxins efficiently.
  • Key findings indicate that the structure and binding efficiency of antibodies significantly influence the immunotoxins' effectiveness, with bivalent antibodies being more potent than monovalent ones and higher potency correlating with increased cell surface antigen density.
View Article and Find Full Text PDF

Humoral immunity against diverse pathogens is rapidly elicited from natural antibody repertoires of limited complexity. But the organizing principles underlying the antibody repertoires that facilitate this immunity are not well-understood. We used HER2 as a model immunogen and reverse-engineered murine antibody response through constructing an artificial antibody library encoded with rudimentary sequence and structural characteristics learned from high throughput sequencing of antibody variable domains.

View Article and Find Full Text PDF

The insulin-like growth factor-1 receptor (IGF-1R) plays a pivotal role in transformation, growth, and survival of glioblastoma multiforme (GBM) cells, and has emerged as a general and promising target for cancer treatment. In this study, we examined the anti-tumor effects of CHM-1, a synthetic 6,7-methylenedioxy substituted 2-phenyl-4-quinolone derivative, on GBM cells in vitro and in vivo. CHM-1 selectively blocked IGF-1R auto-phosphorylation, with an ability to distinguish between IGF-1R and related tyrosine kinase receptors, such as insulin receptor (IR), epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor (FGFR).

View Article and Find Full Text PDF

Protein loops are frequently considered as critical determinants in protein structure and function. Recent advances in high-throughput methods for DNA sequencing and thermal stability measurement have enabled effective exploration of sequence-structure-function relationships in local protein regions. Using these data-intensive technologies, we investigated the sequence-structure-function relationships of six complementarity-determining regions (CDRs) and ten non-CDR loops in the variable domains of a model vascular endothelial growth factor (VEGF)-binding single-chain antibody variable fragment (scFv) whose sequence had been optimized via a consensus-sequence approach.

View Article and Find Full Text PDF

Conformational disorders are involved in various neurodegenerative diseases. Reactive oxygen species (ROS) are the major contributors to neurodegenerative disease; however, ROS that affect the structural changes in misfolded disease proteins have yet to be well characterized. Here we demonstrate that the intrinsic propensity of TDP-43 to aggregate drives the assembly of TDP-43-positive stress granules and soluble toxic TDP-43 oligomers in response to a ROS insult via a disulfide crosslinking-independent mechanism.

View Article and Find Full Text PDF

The degraded, misfolded C terminus of TAR DNA-binding protein-43 is associated with a wide spectrum of neurodegenerative diseases, particularly frontotemporal lobar degeneration with ubiquitin-positive inclusions and amyotrophic lateral sclerosis. However, the precise mechanism of pathological cleavage of the TAR DNA-binding protein-43 remains unknown. Here we show that the TAR DNA-binding protein-43 C-terminal protein physically interacts with itself or with the cellular-folded yeast prion domain of Sup35 forming dynamic aggregates.

View Article and Find Full Text PDF

In this study, we examined the effects of several plant-derived natural compounds on head and neck squamous cell carcinoma (HNSCC) cells. The results revealed that (-)-epigallocatechin gallate (EGCG) demonstrated the most efficient cytotoxic effects on HNSCC cells. We then investigated the underlying molecular mechanism for the potent proapoptotic effect of EGCG on HNSCC.

View Article and Find Full Text PDF

TDP-43 is a highly conserved and ubiquitously expressed nuclear protein. It has been implicated in the regulation of transcription, alternative splicing, translation, and neuronal plasticity. TDP-43 has also been shown to be a disease signature protein associated with several neurodegenerative diseases including amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

Ankyrin repeat domain 17 (Ankrd17) encodes an ubiquitously expressed protein with two clusters of ankyrin repeats. We have used gene targeting strategy to ablate the Ankrd17 gene in mouse. The Ankrd17-deficient mice died between embryonic day (E) 10.

View Article and Find Full Text PDF

NF-kappa B/Rel transcription factors play essential roles to mediate the immune response and apoptosis, and they have also been implicated in cellular differentiation such as erythropoiesis. To elucidate the possible role(s) of NF-kappa B in erythroid gene regulation and erythropoiesis, we have carried out transient transfection studies of the human embryonic/fetal erythroid cell line K562 and mouse adult erythroid MEL cells. It is shown that tumor necrosis factor-alpha represses the transcription activity directed by either alpha or zeta globin promoter in a dose-dependent manner.

View Article and Find Full Text PDF