Publications by authors named "Shinan Geng"

Significant advancements have been made in the application of chimeric antigen receptor (CAR)-T treatment for blood cancers during the previous ten years. However, its effectiveness in treating solid tumors is still lacking, necessitating the exploration of alternative immunotherapies that can overcome the significant challenges faced by current CAR-T cells. CAR-based immunotherapy against solid tumors shows promise with the emergence of macrophages, which possess robust phagocytic abilities, antigen-presenting functions, and the ability to modify the tumor microenvironment and stimulate adaptive responses.

View Article and Find Full Text PDF

There is increasing evidence that maternal exposure to environmental pollutants can cause intestinal and metabolic diseases, and these disease risks still exist in offspring. Here, female C57BL/6 mice were orally treated with procymidone (PRO) (10 and 100 mg/kg body weight/day) by dietary supplementation during the gestation and lactation periods. Then, we discovered PRO changed the physiology, intestinal barrier and metabolism both in the generations of F and different developmental stages of F (7 weeks and 30 weeks old, respectively).

View Article and Find Full Text PDF

Surface PEGylation of nanomedicine is effective for prolonging blood circulation time and facilitating the EPR effect, whereas the hydrophilic stealth surface inhibits effective cellular uptake and hinders active targeting. To address the dilemma, herein, a NIR light-triggered dePEGylation/ligand-presenting strategy based on thermal decomposition of azo bonds is developed, whereby Dox/Pz-IR nanoparticle is self-assembled from thermo-labile azo molecule-linked long PEG chain polymer (Pz-IR), cRGD-conjugated IR783 with short PEG chains (rP-IR) and doxorubicin. The long PEG chains could mask cRGD peptides in the blood circulation, preventing serum degradation and nonspecific interaction with normal cells.

View Article and Find Full Text PDF

The combination of photothermal therapy (PTT) with chemotherapy has great potential to maximize the synergistic effect of thermo-induced chemosensitization and improve treatment performance. To achieve high drug-loading capacity as well as precise synchronization between the controllable release of chemotherapeutics and the duration of near-infrared PTT, in this work, a facile one-step method was first developed to fabricate a novel injectable in situ forming photothermal modulated hydrogel drug delivery platform (D-PPy@PNAs), in which a PNIPAM-based temperature-sensitive acidic triblock polymer [poly(acrylic acid---isopropylamide--acrylic acid (PNA)] was utilized as the stabilizing agent in the polymerization of polypyrrole (PPy). The in situ forming hydrogels showed a sensitive temperature-responsive sol-gel phase-transition behavior, as well as an excellent photothermal property.

View Article and Find Full Text PDF

Transcatheter arterial embolization (TAE) plays an important role in clinical tumor therapy by accomplishing vessel-casting embolization of tumor arteries at all levels and suppressing tumor collateral circulation and vascular re-canalization. In this study, we describe smart blood-vessel-embolic nanogels for improving the anti-tumor efficacy of TAE therapy on hepatocellular carcinoma (HCC). In this study, an model composed of two microfluidic chips was used for simulating the tumor capillary network and analyzing artery-embolization properties.

View Article and Find Full Text PDF

Though a therapeutic sequence plays a key role in tumor therapy, little attention has been paid to its influence on multimodal combined therapy. Herein, we developed gold nanocages (GNC@PNA-hls) decorated with two kinds of temperature sensitive p(N-isopropyl-acrylamide-acrylic acid) copolymers (PNA-hs and PNA-ls) for precise antitumor coordination of thermo-chemotherapy. Doxorubicin-loaded GNC@PNA-hls (Dox-GNC@PNA-hls) showed a steady photothermally induced on-demand release under multiple near-infrared (NIR) irradiations.

View Article and Find Full Text PDF

To realize the sustained release and long-term intratumoural retention of water-soluble cisplatin, thermo/pH-sensitive cisplatin-directed coordination-crosslinking nanogels (Pt-PNA) were developed via the coordination bonds of Pt-carboxyl groups. As the coordination ratio (CR) of the Pt-carboxyl bonds increased from 5% to 35%, the sizes of the Pt-PNA nanogels decreased from 999 nm to 167 nm, and their zeta potentials increased from -35 mV to -13 mV. Only through a simple mixing of cisplatin and PNAs, the entrapment efficiencies (EEs) of the Pt-PNA nanogels reached near 100% (>90%), and the drug-loading amounts (DLs) of cisplatin could achieve up to 25.

View Article and Find Full Text PDF

The delivery of novel bioactive scaffolds for the repair of bone defects remains a prominent challenge worldwide. Currently osteoporosis, a disease caused by low bone mineral density affects over 200 million people worldwide with up to half of this population experiencing at least one fracture within their lifetime. Recently temperature-sensitive p(N-isopropylacrylamide-co-butyl methylacrylate) nanogel (PIB nanogel) scaffolds have emerged as biomaterial candidate for regenerative therapies.

View Article and Find Full Text PDF

Doxorubicin (DOX)-induced co-assembling nanomedicines (D-PNAx) with temperature-sensitive PNAx triblock polymers have been developed for regional chemotherapy against liver cancer via intratumoral administration in the present work. Owing to the formation of insoluble DOX carboxylate, D-PNAx nanomedicines showed high drug-loading and entrapment efficacy via a simple mixing of doxorubicin hydrochloride and PNAx polymers. The sustained releasing profile of D-PNA100 nanomedicines indicated that only 9.

View Article and Find Full Text PDF

Concentrated p(N-isopropylacrylamide) (PNIPAM) nanogel dispersions exhibited rich temperature-sensitive sol-gel phase transition behavior. In the present work, the influence of electrostatic forces between nanogel particles, including attraction and repulsion, on the sol-gel phase transition behavior of PNIPAM nanogel dispersions has been studied. Both oppositely charged nanogels with core-shell structures (NIA and PND nanogels) were synthesized, and their shell charges were calculated to -0.

View Article and Find Full Text PDF

Transarterial chemo-embolization (TACE), which combined embolization therapy and chemotherapy, has become the most widely used treatment for unresectable liver cancer. Blood-vessel-embolic materials play key role on TACE. In the present work, doxorubicin-loaded p(N-isopropylacrylamide-co-butyl methylacrylate) nanogels-iohexol dispersions (IBi-D) were reported firstly for TACE therapy to liver cancer.

View Article and Find Full Text PDF

Purpose: In the present study, the fabrication of novel p(N-isopropylacrylamide-co-butyl methylacrylate) (PIB) nanogels was combined with boron-containing mesoporous bioactive glass (B-MBG) scaffolds in order to improve the mechanical properties of PIB nanogels alone. Scaffolds were tested for mechanical strength and the ability to promote new bone formation in vivo.

Patients And Methods: To evaluate the potential of each scaffold in bone regeneration, ovariectomized rats were chosen as a study model to determine the ability of PIB nanogels to stimulate bone formation in a complicated anatomical bone defect.

View Article and Find Full Text PDF

Recently temperature sensitive polymers have been developed as novel embolization materials. However, their flowability and embolization have been seriously impacted by iodine-based X-ray contrast agents. In order to resolve the drawbacks of these contrast agents, highly concentrated complex (HCC) dispersions of gold nanoparticles (GNPs) with p(N-isopropylacrylamide-co-butyl methylacrylate) (PIB) nanogels were developed as new blood-vessel-embolic materials with high-resolution angiography.

View Article and Find Full Text PDF