Publications by authors named "Shin-ichiro Sekine"

Causative genes in patients with idiopathic basal ganglia calcification (IBGC) (also called primary familial brain calcification (PFBC)) have been reported in the past several years. In this study, we surveyed the clinical and neuroimaging data of 70 sporadic patients and 16 families (86 unrelated probands in total) in Japan, and studied variants of PDGFB gene in the patients. Variant analyses of PDGFB showed four novel pathogenic variants, namely, two splice site variants (c.

View Article and Find Full Text PDF

Idiopathic Basal Ganglia Calcification (IBGC) is a rare neuropsychiatric illness also known as Fahr's disease or Primary Familial Brain Calcification (PFBC). IBGC is caused by SLC20A2 variants, which encodes the inorganic phosphate (Pi) transporter PiT-2, a transmembrane protein associated with Pi homeostasis. We have reported novel SLC20A2 variants in the Japanese population and established an induced pluripotent stem cells (iPSCs) from an IBGC patient carrying a SLC20A2 variant.

View Article and Find Full Text PDF

Introduction: Idiopathic basal ganglia calcification (IBGC), also called Fahr's disease or recently primary familial brain calcification (PFBC), is characterized by abnormal deposits of minerals including calcium mainly and phosphate in the brain. Mutations in SLC20A2 (IBGC1 (merged with former IBGC2 and IBGC3)), which encodes PiT-2, a phosphate transporter, is the major cause of IBGC. Recently, Slc20a2-KO mice have been showed to have elevated levels of inorganic phosphorus (Pi) in cerebrospinal fluid (CSF); however, CSF Pi levels in patients with IBGC have not been fully examined.

View Article and Find Full Text PDF

Idiopathic basal ganglia calcification (IBGC), also known as Fahr disease or primary familial brain calcifications (PFBC), is a rare neurodegenerative disorder characterized by calcium deposits in basal ganglia and other brain regions, causing neuropsychiatric and motor symptoms. We established human induced pluripotent stem cells (iPSCs) from an IBGC patient. The established IBGC-iPSCs carried SLC20A2 c.

View Article and Find Full Text PDF

PiT-1 (encoded by SLC20A1) and PiT-2 (encoded by SLC20A2) are type-III sodium-dependent phosphate cotransporters (NaPiTs). Recently, SLC20A2 mutations have been found in patients with idiopathic basal ganglia calcification (IBGC), and were predicted to bring about an inability to transport Pi from the extracellular environment. Here we investigated the effect of low Pi loading on the human neuroblastoma SH-SY5Y and the human glioblastoma A172 cell lines.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective and progressive loss of motor neurons. The purpose of this study was to clarify effects of brazilian green propolis and the active ingredient against ALS-associated mutant copper-zinc superoxide dismutase (SOD1)-mediated toxicity. Ethanol extract of brazilian green propolis (EBGP) protected N2a cells against mutant SOD1-induced neurotoxicity and reduced aggregated mutant SOD1 by induction of autophagy.

View Article and Find Full Text PDF

PiT-1/SLC20A1 and PiT-2/SLC20A2 are members of the mammalian type-III inorganic phosphate (Pi) transporters encoded by the SLC20 genes. The broad distribution of SLC20A1 and SLC20A2 mRNAs in mammalian tissues is compatible with housekeeping maintenance of intracellular Pi homeostasis by transporting Pi from intrastitial fluid for normal cellular functions. Recently, mutations of SLC20A2 have been found in patients with idiopathic basal ganglia calcification (IBGC), also known as Fahr's disease.

View Article and Find Full Text PDF

Dental pulp cells (DPCs) of various species have been studied for their potentials of differentiation into functional neurons and secretion of neurotrophic factors. In canine, DPCs have only been studied for cell surface markers and differentiation, but there is little direct evidence for therapeutic potentials for neurological disorders. The present study aimed to further characterize canine DPCs (cDPCs), particularly focusing on their neuroregenerative potentials.

View Article and Find Full Text PDF

The purpose of this study was to clarify the effect of Chinese propolis on the expression level of neurotrophic factors in dental pulp cells (DPCs). We also investigated that the effects of the conditioned medium (CM) of DPCs stimulated by the propolis against oxidative and endoplasmic reticulum (ER) stresses in human neuroblastoma SH-SY5Y cells, and on neurite extensions in rat adrenal pheochromocytoma PC12 cells. To investigate the effect of the propolis on the levels of neurotrophic factors in DPCs, we performed a qRT-PCR experiment.

View Article and Find Full Text PDF