Publications by authors named "Shin-ichiro Sano"

Objective: To assess fat distribution in non-obese Japanese children and adolescents.

Design: 130 non-obese Japanese children (73 boys and 57 girls) from Kikugawa, Hamamatsu were included. The visceral fat area (VFA) and subcutaneous fat area (SFA) were measured by computed tomography (CT) and calculated (in cm(2)).

View Article and Find Full Text PDF

The hypothalamus plays a central role in the homeostatic regulation of internal physiological conditions such as body temperature and energy balance. We have previously shown that cold exposure enhances tyrosine phosphorylation of BIT/SHPS-1 (brain immunoglobulin-like molecule with tyrosine-based activation motifs/SHP substrate-1) in hypothalamic nuclei including the suprachiasmatic nucleus. In order to elucidate the function of BIT/SHPS-1 in the hypothalamus, we stimulated BIT/SHPS-1 in vivo by using the anti-BIT monoclonal antibody (mAb) 1D4, which reacts with the extracellular domain of BIT/SHPS-1 and induces its tyrosine phosphorylation.

View Article and Find Full Text PDF

The hypothalamus has a central role in maintaining homeostases of physiological conditions including body temperature and energy balance. To examine molecular responses to cold exposure in the hypothalamus, we examined changes in protein tyrosine phosphorylation in the suprachiasmatic nucleus of the hypothalamus after acute cold exposure in rats. It was found that brain immunoglobulin-like molecule with tyrosine-based inhibitory motifs (BIT, also called SHPS-1, SIRPalpha or p84), a transmembrane glycoprotein with two ITIM motifs, showed enhanced tyrosine phosphorylation after cold exposure.

View Article and Find Full Text PDF

BIT is a transmembrane glycoprotein with three immunoglobulin-like domains in its extracellular region and tyrosine phosphorylation sites in its cytosolic region. We have previously shown that BIT was tyrosine phosphorylated in the hypothalamic suprachiasmatic nucleus in response to light exposure during the dark period, and suggested that it was involved in the light entrainment of the circadian clock. To further investigate the function of BIT in the nervous system, we examined the effect of photic stimulation on its tyrosine phosphorylation in the rat retina.

View Article and Find Full Text PDF

Circadian rhythms of mammals are generated by a circadian oscillation of master pacemaker genes in the suprachiasmatic nucleus of the hypothalamus (SCN), and entrained by environmental factors such as 24-h light-dark cycles. We have previously shown that light exposure during the dark period enhanced tyrosine phosphorylation of brain immunoglobulin-like molecule with tyrosine-based activation motifs (BIT) in the rat SCN. To elucidate the functional roles of BIT in the circadian clock, we stimulated BIT using an anti-BIT monoclonal antibody (mAb) 1D4, which reacts with its extracellular region and induces phosphorylation of its intracellular tyrosine residues.

View Article and Find Full Text PDF

The death and survival of neuronal cells are regulated by various signaling pathways during development of the brain and in neuronal diseases. Previously, we demonstrated that the neuronal adhesion molecule brain immunoglobulin-like molecule with tyrosine-based activation motifs/SHP substrate 1 (BIT/SHPS-1) is involved in brain-derived neurotrophic factor (BDNF)-promoted neuronal cell survival. Here, we report the apoptosis-inducing effect of CD47/integrin-associated protein (IAP), the heterophilic binding partner of BIT/SHPS-1, on neuronal cells.

View Article and Find Full Text PDF