Publications by authors named "Shin-ichiro Imabayashi"

Two series of thiol-modified poly(ethoxyethyl glycidyl ether) with different chain-end groups and molecular weights (PT-PEEGE-SH and Bu-PEEGE-SH), which undergo lower critical solution temperature (LCST)-type phase separation in an aqueous milieu, are grafted onto gold substrates through Au-S bonding. The water wettability of the resultant polymer-tethered surface discontinuously varies with temperature, and this alteration of wettability is reversible according to the variation in temperature of the environment. For all the polymers examined, the transition temperature on surface, TC(surf), the temperature at which half the discontinuous change in surface wettability occurs, increases with the number-average molecular weight (M(n)).

View Article and Find Full Text PDF

We present a new series of polymer-ionic liquid solutions exhibiting LCST-type liquid-liquid phase separation behaviour, and reveal their phase behaviour and intermolecular interactions based on phase diagrams and NMR analysis.

View Article and Find Full Text PDF

A thermoresponsive diblock copolymer, poly(ethyl glycidyl ether)-block-poly(ethylene oxide) (PEGE-b-PEO), is synthesized by successive anionic ring-opening polymerization of ethyl glycidyl ether and ethylene oxide using 2-phenoxyethanol as a starting material, and its solution behavior is elucidated in water. In a dilute 1 wt % solution, the temperature-dependent alteration in the polymer hydrodynamic radius (RH) is measured in the temperature range between 5 and 45 degrees C by pulse-gradient spin-echo NMR and dynamic light scattering. The RH value increased with temperature in two steps, where the first step at 15 degrees C corresponds to the core-shell micelle formation and the second step at 40 degrees C corresponds to the aggregation of the core-shell micelles.

View Article and Find Full Text PDF

Redox properties of phenothiazine-labeled poly(ethyl glycidy ether)-block-poly(ethylene oxide) (PT-EGE(n)-b-EO(m)) are reversibly changed by core-shell micelle formation. In the temperature range higher than the critical micellization temperature (cmt), the anodic potential of PT group positively shifts and concomitantly its anodic current decrease, or levels off compared to those of the reference polymer PT-EO(m) without the thermo-responsive EGE(n) segment. The former alteration is caused by incorporation of hydrophobic PT groups into a core of the micelle and the latter by the decrease in the diffusion coefficient of PT groups due to formation of the core-shell micelles.

View Article and Find Full Text PDF

The catalytic reaction of glucose oxidase (GOx) mediated by 3-(10-phenothiazyl)propionic acid (PT-PA) and phenothiazine-labeled poly(ethylene oxide) (PT-PEO1000) that are covalently bonded to Au(111) electrodes has been investigated. The PT-PA and PT-PEO1000 are reacted with 2-aminoethanethiol (AET), followed by the formation of a self-assembled monolayer (SAM) onto the Au surface. The PT group immobilized on the SAM of AET acts as an effective mediator for the electron transfer (ET) between the electrode and the FAD center of freely diffusing GOx in solution.

View Article and Find Full Text PDF

The effect of charge-inverting modification of single surface lysine residue on the electron transfer (ET) reaction of horse heart cytochrome c (cyt c) is examined for 12 different types of mono-4-chloro-2,5-dinitrobenzoic acid substituted cyt c (mCDNPc) adsorbed on a Au(111) electrode modified with a self-assembled monolayer (SAM) of 7-mercapto-heptanoic acid (MHA). A negative shift in the redox potential by 10-35 mV as compared to that of native cyt c and a monolayer coverage in the range of 13-17 pmol cm(-2) are observed for electroactive mCDNPc's. The magnitude of the decrease in the ET rate constant (k(et)) of mCDNPc's compared with that of native cyt c depends on the position of the CDNP substitution.

View Article and Find Full Text PDF

The electrochemical properties of cytochrome c (cyt c) adsorbed on mixed self-assembled monolayers (SAMs) of 2-mercaptoethanesulfonate (MES)/2-mercaptoethanol (MEL) are compared with those on single-component SAMs of MES, MEL, and mercaptopropionic acid (MPA), using cyclic voltammetry and potential-modulated UV-vis reflectance spectroscopy. The rate constant of electron transfer (ET), k(et), of cyt c adsorbed on the SAM of MPA decreases from 1450 +/- 210 s(-1) at pH 7 to 890 +/- 100 s(-1) at pH 9. In contrast, the value of k(et) of cyt c on the SAM of MES is pH-independent at 100 +/- 15 s(-1).

View Article and Find Full Text PDF

Glucose oxidase [GOx-(PT-PEONH2)] hybrids are synthesized by attaching phenothiazine (PT) groups to aspartic and glutamic acid residues on the enzyme surface via poly(ethylene oxide) (PEO) spacers of different molecular weights. A fast oxidation of FADH2/FADH by PT+ with the aid of the local motion of a hydrophilic, long, flexible PEO spacer is achieved for the GOx-(PT-PEONH2) hybrids and yields greater electron-transfer (ET) rates than that for GOx-(PTNH2) hybrids, in which the PT groups are directly bonded to the GOx surface. The ET rate of GOx-(PT-PEONH2) hybrids depends on the molecular weight of PT-PEONH2, and the maximum is obtained at a molecular weight of 3000.

View Article and Find Full Text PDF

Novel redox-active thermosensitive polymers (phenothiazine-labeled poly(ethoxyethyl glycidyl ether), PT-PEEGE), composed of a polyoxyalkylene backbone, ethoxyethoxymethyl side chains, and an electroactive phenothiazine end group, were prepared by base-catalyzed anionic ring-opening polymerization of ethoxyethyl glycidyl ether monomer in the presence of 10-(2-hydroxyethyl)phenothiazine. Phase separation of a 1.0 mmol dm(-3) (0.

View Article and Find Full Text PDF

A series of glucose oxidase (GOx) hybrids (GOx-phe-nothiazine-labeled poly(ethylene oxide) (PT-PEO)) capable of direct electrical communication with electrodes is synthesized by covalently modifying PT-PEO to lysine residues on the enzyme surface. The length of the PEO chain and the number of PT groups are systematically altered. After the PT-PEO modification, all the hybrids maintain more than 50% of enzyme activity relative to that of native GOx, although loss of the activity becomes greater with increasing PEO chain length.

View Article and Find Full Text PDF