Publications by authors named "Shin-ichiro Fujita"

A detailed understanding of how spaceflight affects human health is essential for long-term space exploration. Liquid biopsies allow for minimally-invasive multi-omics assessments that can resolve the molecular heterogeneity of internal tissues. Here, we report initial results from the JAXA Cell-Free Epigenome Study, a liquid biopsy study with six astronauts who resided on the International Space Station (ISS) for more than 120 days.

View Article and Find Full Text PDF

Dynamic regulation of gene expression plays a key role in establishing the diverse neuronal cell types in the brain. Recent findings in genome biology suggest that three-dimensional (3D) genome organization has important, but mechanistically poorly understood functions in gene transcription. Beyond local genomic interactions between promoters and enhancers, we find that cerebellar granule neurons undergoing differentiation in vivo exhibit striking increases in long-distance genomic interactions between transcriptionally active genomic loci, which are separated by tens of megabases within a chromosome or located on different chromosomes.

View Article and Find Full Text PDF

The present study aimed to investigate the clinical and biological significance of Src‑associated in mitosis 68 kDa (Sam68) in oral squamous cell carcinoma (OSCC). Immunohistochemical analysis was performed on tissue samples obtained from 77 patients with OSCC. Univariate analysis revealed that the high expression of Sam68 was significantly correlated with advanced pathological T stage (P=0.

View Article and Find Full Text PDF

Cryotherapy is one of the most common treatments for trauma or fatigue in the field of sports medicine. However, the molecular biological effects of acute cold exposure on skeletal muscle remain unclear. Therefore, we used zebrafish, which have recently been utilized as an animal model for skeletal muscle, to comprehensively investigate and selectively clarify the time-course changes induced by cryotherapy.

View Article and Find Full Text PDF

Exosomal microRNA (miRNA) in plasma and urine has attracted attention as a novel diagnostic tool for pathological conditions. However, the mechanisms of miRNA dynamics in the exercise physiology field are not well understood in terms of monitoring sports performance. This pilot study aimed to reveal the miRNA dynamics in urine and plasma of full-marathon participants.

View Article and Find Full Text PDF

Despite the World Anti-Doping Agency (WADA) ban on gene doping in the context of advancements in gene therapy, the risk of gene-based doping among athletes is still present. To address this and similar risks, gene-doping tests are being developed in doping control laboratories worldwide. In this regard, the present study was performed with two objectives: to develop a robust gene-doping mouse model with the human gene (h) transferred using recombinant adenovirus (rAdV) as a vector and to develop a detection method to identify gene doping by using this model.

View Article and Find Full Text PDF

As space travel becomes more accessible, it is important to understand the effects of spaceflight including microgravity, cosmic radiation, and psychological stress. However, the effect on offspring has not been well studied in mammals. Here we investigated the effect of 35 days spaceflight on male germ cells.

View Article and Find Full Text PDF

Microgravity induces skeletal muscle atrophy, particularly in the soleus muscle, which is predominantly composed of slow-twitch myofibre (type I) and is sensitive to disuse. Muscle atrophy is commonly known to be associated with increased production of reactive oxygen species. However, the role of NRF2, a master regulator of antioxidative response, in skeletal muscle plasticity during microgravity-induced atrophy, is not known.

View Article and Find Full Text PDF

The prevalence of nonalcoholic fatty liver disease (NAFLD) has been rapidly increasing worldwide. A choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) has been used to create a mouse model of nonalcoholic steatohepatitis (NASH). There are some reports on the effects on mice of being fed a CDAHFD for long periods of 1 to 3 months.

View Article and Find Full Text PDF

Plasma cell-free DNA (cfDNA) is frequently analyzed using liquid biopsy to investigate cancer markers. We hypothesized that this concept might be applicable in exercise physiology. Here, we aimed to identify specific cfDNA (spcfDNA) sequences in the plasma of healthy humans using next-generation sequencing (NGS) and clearly define the dynamics regarding spcfDNA-fragment levels upon extreme exercises, such as running a full marathon.

View Article and Find Full Text PDF

Spaceflight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artificial earth-gravity (artificial 1 g; AG) and microgravity (μg; MG), to investigate whether artificial 1 g exposure prevents muscle atrophy at the molecular level. Our main findings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fiber type composition but also in the alteration of gene expression profiles.

View Article and Find Full Text PDF

Rodent models have been widely used as analogs for estimating spaceflight-relevant molecular mechanisms in human tissues. NASA GeneLab provides access to numerous spaceflight omics datasets that can potentially generate novel insights and hypotheses about fundamental space biology when analyzed in new and integrated fashions. Here, we performed a pilot study to elucidate space biological mechanisms across tissues by reanalyzing mouse RNA-sequencing spaceflight data archived on NASA GeneLab.

View Article and Find Full Text PDF

Paternal dietary conditions may contribute to metabolic disorders in offspring. We have analyzed the role of the stress-dependent epigenetic regulator cyclic AMP-dependent transcription factor 7 (ATF7) in paternal low-protein diet (pLPD)-induced gene expression changes in mouse liver. Atf7 mutations cause an offspring phenotype similar to that caused by pLPD, and the effect of pLPD almost vanished when paternal Atf7 mice were used.

View Article and Find Full Text PDF
Article Synopsis
  • Secondary lymphoid organs, like the spleen and lymph nodes, play a crucial role in immune response regulation, and this study aimed to investigate how spaceflight affects them at the molecular level.
  • Mice were flown on the International Space Station for 35 days, with some exposed to normal gravity through centrifugation to compare the impacts of microgravity and regular gravity conditions.
  • Findings showed significant down-regulation of erythrocyte-related genes in the spleens of mice in space, indicating that spaceflight could disrupt normal gene expression and immune function due to microgravity and other environmental factors.
View Article and Find Full Text PDF

The catalytic hydrogenation of 2,4-dinitroaniline using a 0.5 wt% Pt/TiO2 catalyst was investigated in a multiphase medium of tetrahydrofuran (THF) pressurized by CO2 at different pressures and at 323 K. When CO2 pressure was increased, the overall rate of hydrogenation simply decreased but the selectivity to the desired product of 4-nitro-1,2-phenylenediamine increased.

View Article and Find Full Text PDF

The formation and adsorption of CO from CO(2) and H(2) at high pressures were studied over alumina-supported noble metal catalysts (Pt, Pd, Rh, Ru) by in situ FTIR measurements. To examine the effects of surface structure of supported metal particles and water vapor on the CO adsorption, FTIR spectra were collected at 323 K with untreated and heat (673 K) treated catalysts in the absence and presence of water (H(2)O, D(2)O). It was observed that the adsorption of CO occurred on all the metal catalysts at high pressures, some CO species still remained adsorbed under ambient conditions after the high pressure FTIR measurements, and the frequencies of the adsorbed CO species were lower either for the heat treated samples or in the presence of water vapor.

View Article and Find Full Text PDF

A novel method for the synthesis of nanocrystalline zinc oxide without any additive was developed using zinc acetate and 1,4-butanediol through sonication. The structure and morphology of prepared nanocrystalline zinc oxide was investigated by various techniques like TEM, XRD, EDAX, UV-Vis spectroscopy. The solvent 1,4-butanediol played a dual role of fuel as well as capping agent eliminating addition of any extraneous species.

View Article and Find Full Text PDF

The hydrogenation of benzaldehyde and cinnamaldehyde has been studied with a 5% Pt/C catalyst in compressed CO(2). The effect of CO(2) pressure on the total conversion was found to be different between the two aldehydes. The total conversion of benzaldehyde merely decreases with increasing CO(2) pressure, while that of cinnamaldehyde shows a maximum at a certain pressure.

View Article and Find Full Text PDF