Publications by authors named "Shin-ichi Tomizawa"

Article Synopsis
  • Cryptorchidism is a common congenital condition in newborn males where one or both testes fail to descend into the scrotum, leading to potential infertility due to azoospermia.
  • Research using a mouse model of surgically induced cryptorchidism revealed changes in the epigenetic markers H3K27me3 and H3K9me3 in spermatogonial cells, with a specific loss of H3K27me3 linked to gene activation related to development and apoptosis.
  • The study indicates that elevated temperatures may enhance the activity of enzymes that demethylate H3K27, contributing to mRNA dysregulation and potentially impacting spermatogonial function.
View Article and Find Full Text PDF

Smoc1 and Smoc2, members of the SPARC family of genes, encode signaling molecules downstream of growth factors such as the TGF-β, FGF, and PDGF families. Smoc1 has been implicated in playing a crucial role in microphthalmia with limb anomalies in humans and mice, while Smoc2 deficiency causes dental developmental defects. Although developmental cytokines/growth factors including TGF-β superfamily have been shown to play critical roles in postnatal spermatogenesis, there are no reports analyzing the spatial and temporal expression of Smoc1 and Smoc2 in the postnatal testis.

View Article and Find Full Text PDF

Male infertility can be caused by chromosomal abnormalities, mutations and epigenetic defects. Epigenetic modifiers pre-program hundreds of spermatogenic genes in spermatogonial stem cells (SSCs) for expression later in spermatids, but it remains mostly unclear whether and how those genes are involved in fertility. Here, we report that Wfdc15a, a WFDC family protease inhibitor pre-programmed by KMT2B, is essential for spermatogenesis.

View Article and Find Full Text PDF

Mouse spermatogenesis entails the maintenance and self-renewal of spermatogonial stem cells (SSCs), which require a complex web-like signaling network transduced by various cytokines. Although brain-derived neurotrophic factor (BDNF) is expressed in Sertoli cells in the testis, and its receptor tropomyosin receptor kinase B (TrkB) is expressed in the spermatogonial population containing SSCs, potential functions of BDNF for spermatogenesis have not been uncovered. Here, we generate BDNF conditional knockout mice and find that BDNF is dispensable for in vivo spermatogenesis and fertility.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed an in vitro culture system using immature mouse oocytes to analyze how specific factors influence DNA methylation related to gene expression in embryos.
  • The oocytes were grown under two oxygen conditions—normoxia and hypoxia—allowing examination of growth effects on global and specific gene methylation.
  • Results showed that while in vitro oocytes displayed growth-related methylation patterns similar to in vivo ones, their gene expression varied based on oxygen levels, revealing insights into oocyte development and stress responses.
View Article and Find Full Text PDF

Heterochromatin-related epigenetic mechanisms, such as DNA methylation, facilitate pairing of homologous chromosomes during the meiotic prophase of mammalian spermatogenesis. In pro-spermatogonia, de novo DNA methylation plays a key role in completing meiotic prophase and initiating meiotic division. However, the role of maintenance DNA methylation in the regulation of meiosis, especially in the adult, is not well understood.

View Article and Find Full Text PDF

During spermatogenesis, intricate gene expression is coordinately regulated by epigenetic modifiers, which are required for differentiation of spermatogonial stem cells (SSCs) contained among undifferentiated spermatogonia. We have previously found that KMT2B conveys H3K4me3 at bivalent and monovalent promoters in undifferentiated spermatogonia. Because these genes are expressed late in spermatogenesis or during embryogenesis, we expect that many of them are potentially programmed by KMT2B for future expression.

View Article and Find Full Text PDF

MN1 was originally identified as a tumor-suppressor gene. Knockout mouse studies have suggested that Mn1 is associated with craniofacial development. However, no MN1-related phenotypes have been established in humans.

View Article and Find Full Text PDF

Respiratory failure is a life-threatening problem for pre-term and term infants, yet many causes remain unknown. Here, we present evidence that whey acidic protein (WAP) four-disulfide core domain protease inhibitor 2 (Wfdc2), a protease inhibitor previously unrecognized in respiratory disease, may be a causal factor in infant respiratory failure. transcripts are detected in the embryonic lung and analysis of a knock-in mouse line shows that both basal and club cells, and type II alveolar epithelial cells (AECIIs), express neonatally.

View Article and Find Full Text PDF

The mammalian male germline is sustained by a pool of spermatogonial stem cells (SSCs) that can transmit both genetic and epigenetic information to offspring. However, the mechanisms underlying epigenetic transmission remain unclear. The histone methyltransferase Kmt2b is highly expressed in SSCs and is required for the SSC-to-progenitor transition.

View Article and Find Full Text PDF
Article Synopsis
  • Gametogenesis in mammals involves significant epigenetic changes, particularly in the female germline, where DNA methylation is established late in oocyte growth, primarily through transcription events.
  • The study aimed to understand if the timing of transcription affects the rate of this methylation process and the asynchronized methylation of imprinted genes by creating comprehensive maps of methylation and transcription in developing oocytes.
  • Findings revealed that while most genomic elements gain methylation at similar rates, CpG islands experience delays linked to chromatin remodeling rather than transcription timing, with chromatin features and transcription factor binding potentially influencing the timing of methylation acquisition.
View Article and Find Full Text PDF

Erasure and subsequent reinstatement of DNA methylation in the germline, especially at imprinted CpG islands (CGIs), is crucial to embryogenesis in mammals. The mechanisms underlying DNA methylation establishment remain poorly understood, but a number of post-translational modifications of histones are implicated in antagonizing or recruiting the de novo DNA methylation complex. In mouse oogenesis, DNA methylation establishment occurs on a largely unmethylated genome and in nondividing cells, making it a highly informative model for examining how histone modifications can shape the DNA methylome.

View Article and Find Full Text PDF

Background: Previously, a role was demonstrated for transcription in the acquisition of DNA methylation at imprinted control regions in oocytes. Definition of the oocyte DNA methylome by whole genome approaches revealed that the majority of methylated CpG islands are intragenic and gene bodies are hypermethylated. Yet, the mechanisms by which transcription regulates DNA methylation in oocytes remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how DNA methylation influences the formation and differentiation of spermatogonial stem cells in male mice, focusing on critical stages like neonatal prospermatogonia and early postnatal development.
  • Researchers observed large, partially methylated domains in all germ cells, as well as high non-CG methylation and 5-hydroxymethylcytosines specifically in neonatal prospermatogonia.
  • The results indicate that DNA methylation patterns are distinct and dynamic during early stages of male germ cell development, highlighting significant stage-specific variations that contrast with the stability seen in adult spermatogonial stem cells.
View Article and Find Full Text PDF

Stem cells are identified classically by an in vivo transplantation assay plus additional characterization, such as marker analysis, linage-tracing and in vitro/ex vivo differentiation assays. Stem cell lines have been derived, in vitro, from adult tissues, the inner cell mass (ICM), epiblast, and male germ stem cells, providing intriguing insight into stem cell biology, plasticity, heterogeneity, metastable state, and the pivotal point at which stem cells irreversibly differentiate to non-stem cells. During the past decade, strategies for manipulating cell fate have revolutionized our understanding about the basic concept of cell differentiation: stem cell lines can be established by introducing transcription factors, as with the case for iPSCs, revealing some of the molecular interplay of key factors during the course of phenotypic changes.

View Article and Find Full Text PDF

Epigenetic modifications influence gene expression and chromatin remodeling. In embryonic pluripotent stem cells, these epigenetic modifications have been extensively characterized; by contrast, the epigenetic events of tissue-specific stem cells are poorly understood. Here, we define a new epigenetic shift that is crucial for differentiation of murine spermatogonia toward meiosis.

View Article and Find Full Text PDF

DNA methylation in the oocyte has a particular significance: it may contribute to gene regulation in the oocyte and marks specific genes for activity in the embryo, as in the case of imprinted genes. Despite the fundamental importance of DNA methylation established in the oocyte, knowledge of the mechanisms by which it is conferred and how much is stably maintained in the embryo has remained very limited. Next generation sequencing approaches have dramatically altered our views on DNA methylation in oocytes.

View Article and Find Full Text PDF

Allele-specific methylation of the endogenous H19 imprinting control region (ICR) is established in sperm. We previously showed that the paternal H19 ICR in yeast artificial chromosome (YAC) transgenic mice (TgM) was preferentially methylated in somatic cells, but not in germ cells, suggesting that differential methylation could be established after fertilization. In this report, we discovered small RNA molecules in growing oocytes, the nucleotide sequences of which mapped to the H19 ICR.

View Article and Find Full Text PDF

Genomic imprinting is an epigenetic gene-marking phenomenon that occurs in the germline, whereby genes are expressed from only one of the two parental copies in embryos and adults. Imprinting is essential for normal mammalian development and its disruption can cause various developmental defects and diseases. The process of imprinting in the germline involves DNA methylation of the imprint control regions (ICRs), and resulting parental-specific methylation imprints are maintained in the zygote and act as the marks controlling imprinted gene expression.

View Article and Find Full Text PDF

Elucidating how and to what extent CpG islands (CGIs) are methylated in germ cells is essential to understand genomic imprinting and epigenetic reprogramming. Here we present, to our knowledge, the first integrated epigenomic analysis of mammalian oocytes, identifying over a thousand CGIs methylated in mature oocytes. We show that these CGIs depend on DNMT3A and DNMT3L but are not distinct at the sequence level, including in CpG periodicity.

View Article and Find Full Text PDF

Genomic imprinting causes parental origin-specific monoallelic gene expression through differential DNA methylation established in the parental germ line. However, the mechanisms underlying how specific sequences are selectively methylated are not fully understood. We have found that the components of the PIWI-interacting RNA (piRNA) pathway are required for de novo methylation of the differentially methylated region (DMR) of the imprinted mouse Rasgrf1 locus, but not other paternally imprinted loci.

View Article and Find Full Text PDF
Article Synopsis
  • * Research indicated that the patterns of methylation in sperm and oocytes differ significantly from those observed in embryos, highlighting that paternal DMRs have unique characteristics.
  • * The study found dynamic changes in methylation patterns throughout early development and noted the presence of non-CpG methylation in oocytes, suggesting that DMRs are intricately involved in the epigenetic reprogramming of embryos.
View Article and Find Full Text PDF