Careful scrutiny of the protein interior of Hydrogenobacter thermophilus cytochrome c(552) (HT) on the basis of its X-ray structure [Travaglini-Allocatelli, C., Gianni, S., Dubey, V.
View Article and Find Full Text PDFA male ferret, which was purchased from abroad at 9 months of age, had shown significant weight loss starting at 13 months of age. The ferret subsequently showed decreasing motor activity and recumbency and was euthanized at 14 months of age. At necropsy, a white, quail egg-sized mass was found in the mesentery.
View Article and Find Full Text PDFIn Hydrogenobacter thermophilus cytochrome c(552), an electrostatic interaction between Lys8 and Glu68 in the N- and C-terminal helices, respectively, stabilizes its protein structure [Travaglini-Allocatelli, C., Gianni, S., Dubey, V.
View Article and Find Full Text PDFThe thermodynamic properties of the redox potentials (E(m)) of Pseudomonas aeruginosa cytochrome c(551) (PA) and its mutants possessing a variety of pK(a) values for the heme 17-propionic acid side chain, which ranged from approximately 5 to approximately 8, have been investigated to elucidate the role of ionization of the heme side chain in the E(m) control. Since the pK(a) values of the heme 17-propionic acid side chains of the oxidized and reduced forms of PA are 5.9 +/- 0.
View Article and Find Full Text PDFIn order to elucidate the molecular mechanisms responsible for the apparent nonlinear behavior of the temperature dependence of the redox potential of Hydrogenobacter thermophilus cytochrome c552 [Takahashi, Y., Sasaki, H., Takayama, S.
View Article and Find Full Text PDFThermophile Hydrogenobacter thermophilus cytochrome c(552) (HT) is a stable protein with denaturation temperatures (T(m)) of 109.8 and 129.7 degrees C for the oxidized and reduced forms, respectively [Uchiyama, S.
View Article and Find Full Text PDFPseudomonas aeruginosa cytochrome c(551) and a series of its mutants exhibiting various thermostabilities have been studied by paramagnetic (1)H NMR and cyclic voltammetry in an effort to elucidate the molecular mechanisms responsible for control of the redox potentials (E degrees ') of the proteins. The study revealed that the E degrees ' value of the protein is regulated by two molecular mechanisms operating independently of each other. One is based on the Fe-Met coordination bond strength in the protein, which is determined by the amino acid side chain packing in the protein, and the other on the pK(a) of the heme 17-propionic acid side chain, which is affected by the electrostatic environment.
View Article and Find Full Text PDF