Spherical 50 nm silica-based nanoparticles (SiNPs) promote healthy bone homeostasis and maintenance by supporting bone forming osteoblast lineage cells while simultaneously inhibiting the differentiation of bone resorbing osteoclasts. Previous work demonstrated that an intraperitoneal injection of SiNPs in healthy mice - both young and old - increased bone density and quality, suggesting the possibility that SiNPs represent a dual action therapeutic. However, the underlying mechanisms governing the osteoclast response to SiNPs have yet to be fully explored and defined.
View Article and Find Full Text PDFThe synergistic effects of a doxorubicin (Dox)-loaded microparticle-microbubble complex (DMMC) and focused ultrasound (FUS) with a short duty cycle (5%) were evaluated in a pancreatic cancer xenograft model established by inoculating immunodeficient mice with CFPAC-1 cells. The efficacy of the DMMC with FUS (study 1), the effect of conjugating the particles as opposed to mixing them (study 2) and the levels of tumor apoptosis and intracellular Dox (study 3) were evaluated. The DMMC with FUS exhibited the lowest tumor growth rate (30.
View Article and Find Full Text PDFPurpose: The purpose of this study was to evaluate the ability of contrast-enhanced ultrasonography (CEUS) with microbubbles to detect metastatic lymph nodes (LNs) for treatment planning and prognosis.
Methods: For the metastatic LN model, ground VX2 tumor tissues were injected subcutaneously in 12 rabbits, just below the right hind limb. The rabbits were classified into three groups based on the LN area: group A (n=4, >1.
Crossing the blood-brain barrier (BBB) is crucial for drug delivery to the brain and for treatment of brain tumors, such as glioblastoma, the most common of all primary malignant brain tumors. Microbubble (MB) is oscillated and destroyed by controlling ultrasound (US) parameters. This oscillation and destruction of MB can open the BBB transiently, and a drug can be delivered to the brain.
View Article and Find Full Text PDFImage-guided intra-arterial therapies play a key role in the management of hepatic malignancies. However, limited clinical outcomes suggest the need for new multifunctional drug delivery systems to enhance local drug concentration while reducing systemic adverse reactions. Therefore, we developed the albumin-doxorubicin nanoparticle conjugated microbubble (ADMB) to enhance therapeutic efficiency by sonoporation under exposure to ultrasound.
View Article and Find Full Text PDFJ Magn Reson Imaging
December 2018
Background: Interest in an ultrasound-mediated delivery system for effective T -MRI of prostate cancer without adverse effects has steadily increased.
Purpose: To develop an ultrasound-responsive dual-modal ultrasound (US)/T -MRI contrast agent for efficient diagnosis of prostate cancer cells overexpressing prostate-specific membrane antigen (PSMA) and assess their potential.
Study Type: In vitro.
Silica based nanoparticles have been demonstrated to have intrinsic biologic activity towards the skeleton and to function by promoting the differentiation of bone forming osteoblasts while inhibiting the differentiation of bone resorbing osteoclasts. The excitement surrounding nanomedicine in part revolves around the almost unlimited possibilities for varying the physicochemical properties including size, composition, and surface charge. To date few studies have attempted to manipulate these characteristics in concert to optimize a complex biologic outcome.
View Article and Find Full Text PDFTo date, delivery of light-emitting diode (LED)-activated compounds to cells and tissue remains a challenge. Silica-based materials possess good biocompatibility and have advantages of control of size and shape. Fluorescent silica nanoparticles (NPs) have been synthesized and used for applications such as cell tracking and tumor identification.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2017
Hydroxyapatite (HAp) is critical to health both as the main structural material of the skeleton and storage material of calcium and phosphate. Nanosized HAp (nHAp) is naturally produced by mineralizing cells during bone formation and remodeling and is the main constituent of the skeleton. As such, HAp is currently being investigated as a therapeutic biomaterial for orthopedic and dental purposes.
View Article and Find Full Text PDFBackground: Multimodal nanomaterials are useful for providing enhanced diagnostic information simultaneously for a variety of in vivo imaging methods. According to our research findings, these multimodal nanomaterials offer promising applications for cancer therapy.
Results: Melanin nanoparticles can be used as a platform imaging material and they can be simply produced by complexation with various imaging active ions.
J Clin Endocrinol Metab
November 2015
Context: Phosphorus-based food additives can substantially increase total phosphorus intake per day, but the effect of these additives on endocrine factors regulating bone and mineral metabolism is unclear.
Objective: This study aimed to examine the effect of phosphorus additives on markers of bone and mineral metabolism. Design and Setting, and Participants: This was a feeding study of 10 healthy individuals fed a diet providing ∼1000 mg of phosphorus/d using foods known to be free of phosphorus additives for 1 week (low-additive diet), immediately followed by a diet containing identical food items; however, the foods contained phosphorus additives (additive-enhanced diet).
Hydroxyapatite (HA) is the primary structural component of the skeleton and dentition. Under biological conditions, HA does not occur spontaneously and therefore must be actively synthesized by mineralizing cells such as osteoblasts. The mechanism(s) by which HA is actively synthesized by cells and deposited to create a mineralized matrix are not fully understood and the consequences of mineralization on cell function are even less well understood.
View Article and Find Full Text PDFUnlabelled: We recently reported that in vitro, engineered 50nm spherical silica nanoparticles promote the differentiation and activity of bone building osteoblasts but suppress bone-resorbing osteoclasts. Furthermore, these nanoparticles promote bone accretion in young mice in vivo. We have now investigated the capacity of these nanoparticles to reverse bone loss in aged mice, a model of human senile osteoporosis.
View Article and Find Full Text PDFWe recently identified an engineered bioactive silica-based nanoparticle formulation (designated herein as NP1) that stimulates in vitro differentiation and mineralization of osteoblasts, the cells responsible for bone formation, and increases bone mineral density in young mice in vivo. The results demonstrate that these nanoparticles have intrinsic biological activity; however, the intracellular fate and a complete understanding of the mechanism(s) involved remains to be elucidated. Here we investigated the cellular mechanism(s) by which NP1 stimulates differentiation and mineralization of osteoblasts.
View Article and Find Full Text PDFRecent studies in both rodents and humans suggest that elevated serum phosphorus, in the context of normal renal function, potentiates, or exacerbates pathologies associates with cardiovascular disease, bone metabolism, and cancer. Our recent microarray studies identified the potent stimulation of pro-angiogenic genes such as forkhead box protein C2 (FOXC2), osteopontin, and Vegfα, among others in response to elevated inorganic phosphate (Pi). Increased angiogenesis and neovascularization are important events in tumor growth and the progression to malignancy and FOXC2 has recently been identified as a potential transcriptional regulator of these processes.
View Article and Find Full Text PDFSilica-based nanomaterials are generally considered to be excellent candidates for therapeutic applications particularly related to skeletal metabolism however the current data surrounding the safety of silica based nanomaterials is conflicting. This may be due to differences in size, shape, incorporation of composite materials, surface properties, as well as the presence of contaminants following synthesis. In this study we performed extensive in vitro safety profiling of ∼ 50 nm spherical silica nanoparticles with OH-terminated or Polyethylene Glycol decorated surface, with and without a magnetic core, and synthesized by the Stöber method.
View Article and Find Full Text PDFNanomaterials are diverse in size, shape and charge and these differences likely alter their physicochemical properties in biological systems. We have investigated how these properties alter the initial and long-term dynamics of endocytosis, cell viability, cell division, exocytosis, and interaction with a collagen extracellular matrix using silica-based fluorescent nanoparticles and the murine pre-osteoblast cell line, MC3T3-E1. Three surface modified nanoparticles were analyzed: positively charged (PTMA), negatively charged (OH), and neutrally charged polyethylene glycol (PEG).
View Article and Find Full Text PDFZinc oxide nanoparticles (ZnO-np) are used in an increasing number of industrial products such as paint, coating and cosmetics, and in other biological applications. There have been many suggestions of a ZnO-np toxicity paradigm but the underlying molecular mechanisms about the toxicity of ZnO-np remain unclear. This study was done to determine the potential toxicity of ZnO-np and to assess the toxicity mechanism in normal skin cells.
View Article and Find Full Text PDFBone is a dynamic tissue that undergoes renewal throughout life in a process whereby osteoclasts resorb worn bone and osteoblasts synthesize new bone. Imbalances in bone turnover lead to bone loss and development of osteoporosis and ultimately fracture, a debilitating condition with high morbidity and mortality. Silica is a ubiquitous biocontaminant that is considered to have high biocompatibility.
View Article and Find Full Text PDFWe characterized fluorescent silica nanoparticles (FNPs), which had been applied in many biological systems, in fish embryo rearing media (ERM) solution and evaluated the potential toxicity to the early development of Oryzias latipes embryos. Distribution of FNPs in embryos and larvae of O. latipes was studied by fluorescent and confocal laser scanning microscopic studies.
View Article and Find Full Text PDFThe phosphorescent Ir(III) complexes were modified by allylation and consecutive hydrosilylation, and covalently incorporated into the silica nanoparticles by hydrolysis and condensation reaction with TEOS. These nanoparticles showed an excellent photochemical and thermal stability, and a very high luminescent efficiency due to the blocking of O(2) quenching and suppression of energy transfer through the amorphous silica solid solution. The limited mobility of complexes in the silica matrix also resulted in a decrease in the vibration relaxation and restrained the nonradiative decay.
View Article and Find Full Text PDFWe have successfully fabricated triacetylcellulose (TAC) polymer-silica nanocomposite films having up to 40 wt % of incorporated silica nanoparticles by deliberately designing a surface ligand that has a structure similar to that of polymer repeating units and effectively modifying the surface of silica nanoparticles through chemical bonding. Cross-sectional TEM analysis reveals no significant aggregation in all TAC-silica nanocomposite films. Thermal analysis results suggested that TAC-silica nanocomposites had higher T(g) and T(c) values as compared to pure TAC, and the increase in T(g) and T(c) was affected by the silica content.
View Article and Find Full Text PDFA new synthetic method has been developed to prepare fluorescent silica nanoparticles without employing isothiocyanated dye molecules and (3-aminopropyl)triethoxysilane (APS) for the thiourea linkage formation; the resulting fluorescent silica nanoparticles show excellent photochemical, thermal and pH stabilities and a good biocompatibility with over 85% viability from various cell types.
View Article and Find Full Text PDF