Publications by authors named "Shin-Ping Lin"

is a red macroalga known for its bioactive compounds with antioxidant, anti-inflammatory, and skin-regenerative properties. The study aimed to examine their effects on UV protection, collagen synthesis, fibroblast proliferation, and pigmentation modulation. Bioactive compounds were extracted using two solvents, producing ethanol extract (FE) and alkaline extracts (AE).

View Article and Find Full Text PDF

Kombucha, a functional beverage rich in glucuronic acid, is fermented in the presence of acetic acid bacteria and yeast as the primary microorganisms. Glucuronic acid is recognized for its various physiological benefits, such as detoxification, antioxidation, and anti-inflammation. To optimize the glucuronic acid content in kombucha, various strain combinations by selecting fermented sources were accomplished.

View Article and Find Full Text PDF

Owing to a lack of specific biological functions, bacterial cellulose (BC) has been restricted in its application to the field of active packaging. In this study, we developed antimicrobial packaging materials using foaming BC (FBC) with chitosan (CS) and applied it to the preservation of chilled sea bass. The material property analysis demonstrated that 1.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: The Compendium of Materia Medica and the Classic of Materia Medica, the two most prominent records of traditional Chinese medicine, documented the therapeutic benefits of Ganoderma sinense particularly in addressing pulmonary-related ailments. Ganoderma formosanum, an indigenous subspecies of G. sinense from Taiwan, has demonstrated the same therapeutic properties.

View Article and Find Full Text PDF

By employing co-cultivation technique on Komagataeibacter xylinum and Lactococcus lactis subsp. lactis, bacterial cellulose (BC)/nisin films with improved antibacterial activity and mechanical properties were successfully produced. The findings demonstrated that increased nisin production is associated with an upregulation of gene expression.

View Article and Find Full Text PDF

Surface modification of durian rind cellulose (DCell) was done by utilizing the strong coordination effect of polyphenol-based metal phenolic networks (MPNs). MPNs from Fe(III)-tannic acid (FTN) and Fe(III)-gallic acid (FGN) were coated on DCell via a self-assembly reaction at pH 8, resulting in adsorbent composites of FTN@DCell and FGN@DCell for removal of Cr(VI). Batch adsorption experiments revealed that FTN coating resulted in an adsorbent composite with higher adsorption capacity than FGN coating, owing to the greater number of additional adsorption sites from phenolic hydroxyl groups of tannic acid.

View Article and Find Full Text PDF

Repeated-batch fermentation with fungal mycelia immobilized in plastic composite support (PCS) eliminates the lag phase during fermentation and improves metabolite productivity. The strategy is implemented herein, and a novel modified PCS is developed to enhance exopolysaccharide (EPS) production from the medicinal fungus Cordyceps militaris. A modified PCS (SYE + PCS) was made by compositing polypropylene (PP) with a nutrient mixture containing soybean hull, peptone, yeast extract, and minerals (SYE+).

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Particulate matter 2.5 (PM2.5) is a dangerous airborne pollutant that has become a global issue due to its detrimental effect on macrophages.

View Article and Find Full Text PDF

Bacterial cellulose (BC) is used in biomedical applications due to its unique material properties such as mechanical strength with a high water-absorbing capacity and biocompatibility. Nevertheless, native BC lacks porosity control which is crucial for regenerative medicine. Hence, developing a simple technique to change the pore sizes of BC has become an important issue.

View Article and Find Full Text PDF

Tuberculosis (TB) is a disease caused by the M. tuberculosis bacteria infection and is listed as one of the deadliest diseases to date. Despite the development of antituberculosis drugs, the need for long-term drug consumption and low patient commitment are obstacles to the success of TB treatment.

View Article and Find Full Text PDF

Despite many non-Saccharomyces yeasts being considered spoilage microorganisms, they can increase aroma and flavor diversity in alcoholic beverages. The purpose of this study was to investigate nontraditional inoculation strategies using aroma-producing yeast strains for Kyoho wine fermentation, followed by an instrumental analysis and sensory evaluation. The winemaking process was carried out using Saccharomyces cerevisiae Gr112, Hanseniaspora uvarum Pi235, and Pichia kluyveri Pe114.

View Article and Find Full Text PDF

Atmospheric cold plasma (ACP) is a nonthermal technology that is extensively used in several industries. Within the scopes of engineering and biotechnology, some notable applications of ACP include waste management, material modification, medicine, and agriculture. Notwithstanding numerous applications, ACP still encounters a number of challenges such as diverse types of plasma generators and sizes, causing standardization challenges.

View Article and Find Full Text PDF

Violacein has attracted increasing attention due to its various biological activities, such as antibacterial, antifungal, antioxidative, and antitumor effects. To improve violacein production, formic acid (FA) was added to a culture medium, which resulted in a 20% increase (1.02 g/L) compared to the no-FA-addition group (0.

View Article and Find Full Text PDF

Cellulosic waste as a major type of agricultural waste can be acid deconstructed as a carbon source for fermentation application. However, various fermented inhibitors, such as formic acid, furfural, and 5-hydroxymethylfurfural, are also produced during processing. In this study, sugarcane bagasse (SB) was hydrolyzed with sulfuric acid, and atmospheric cold plasma (ACP) was used to remove the toxic inhibitors.

View Article and Find Full Text PDF

(GF) is a medicinal mushroom endemic to Taiwan. Previous research established the optimal culture conditions to produce exopolysaccharide rich in β-glucan (GF-EPS) from submerged fermentation of GF. The present study investigated the antitumor effects of GF-EPS in a Lewis lung carcinoma cell (LLC1) tumor-bearing mice model.

View Article and Find Full Text PDF

Toxic compounds in pineapple peel waste hydrolysate (PPWH), namely formic acid, 5-hydroxymethylfurfural (HMF), and furfural, are the major predicament in its utilization as a carbon source for bacterial cellulose (BC) fermentation. A rapid detoxification procedures using atmospheric cold plasma (ACP) technique were employed to reduce the toxic compounds. ACP treatment allows the breakdown of toxic compounds without causing excessive breakdown of sugars.

View Article and Find Full Text PDF

The current study used acid hydrolysis of lignocellulosic materials to obtain fermentable sugar for bioethanol production. However, toxic compounds that inhibit fermentation are also produced during the process, which reduces the bioethanol productivity. In this study, atmospheric cold plasma (ACP) was adopted to degrade the toxic compounds within sulfuric acid-hydrolyzed sugarcane bagasse.

View Article and Find Full Text PDF

Biocompatible bacterial cellulose pellicle (BCP) is a candidate for biomedical material such as wound dressing. However, due to lack of antibacterial activity, to grant BCP with the property is crucial for its biomedical application. In the present study, BCP was modified by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation using TEMPO/NaClO/NaBr system at pH 10 to form TEMPO-oxidized BCP (TOBCP) with anionic C6 carboxylate groups.

View Article and Find Full Text PDF

Extracellular polysaccharide (EPS) is one of the major bioactive ingredients contributing to the health benefits of Ganoderma spp. In this study, response surface methodology was applied to determine the optimal culture conditions for EPS production of Ganoderma formosanum. The optimum medium composition was found to be at initial pH 5.

View Article and Find Full Text PDF

In this study, the inhibitory effect of Ganoderma formosanum mycelium extracts on tyrosinase, the central regulatory enzyme being responsible for cutaneous pigmentation, was investigated in both cell-free and cellular enzymatic systems, as well as in phenotype-based zebrafish model. Bioassay-guided purification indicated that the ethyl acetate fraction of G. fromosanum mycelium ethanolic extract (GFE-EA) demonstrated the highest inhibition toward cell-free tyrosinase (IC50 = 118.

View Article and Find Full Text PDF

A bacterial cellulose (BC) producing strain isolated from fermented fruit juice was identified as Komagataeibacter intermedius (K. intermedius) FST213-1 by 16s rDNA sequencing analysis and biochemical characteristics test. K.

View Article and Find Full Text PDF

In this study, kojic acid, a secondary metabolite as an industrially important compound, was produced by Aspergillus oryzae (A. oryzae), which was immobilized in plastic composite support (PCS) bioreactor. Nitrogen deficient medium was applied to increase the production of KA in PCS-immobilized bioreactor.

View Article and Find Full Text PDF

Oncogenic activation of the Wnt signaling pathway is common in cancers, but mutation of beta-catenin in ovarian cancer is rare. In addition to genetic events, epigenetic modification of secreted frizzled-related protein (SFRP) family has been shown to be important in regulating Wnt signaling. Although high degree of homology is observed in the same family, different SFRPs may have opposing effects on the same process.

View Article and Find Full Text PDF