Citrus greening (huanglongbing) is the most destructive disease of citrus worldwide. It is spread by citrus psyllids and is associated with phloem-limited bacteria of three species of α-Proteobacteria, namely, 'Candidatus Liberibacter asiaticus', 'Ca. L.
View Article and Find Full Text PDFCitrus huanglongbing (HLB or citrus greening) is one of the most devastating diseases of citrus worldwide. The disease is caused by Gram-negative, phloem-limited α-proteobacterium, 'Candidatus Liberibacter asiaticus', vectored by the psyllid, Diaphorina citri Kuwayama. Citrus plants infected by the HLB bacterium may not show visible symptoms sometimes for years following infection and non-uniform distribution within the tree makes the detection of the pathogen very difficult.
View Article and Find Full Text PDFA phloem-limited bacterium, 'Candidatus Liberibacter asiaticus' (Las) is a major pathogen of citrus greening (huanglongbing), one of the most destructive citrus diseases worldwide. The rapid identification and culling of infected trees and budwoods in quarantine are the most important control measures. DNA amplification including conventional polymerase chain reaction (PCR) has commonly been used for rapid detection and identification.
View Article and Find Full Text PDFThe aim of this study was to investigate the genetic diversity and relationships among 'Candidatus Liberibacter asiaticus' isolates from different hosts and distinct geographical areas in Southeast Asia. Genetic diversity among 'Ca. Liberibacter asiaticus' was estimated by sequencing four well-characterized DNA fragments: the 16S ribosomal DNA (rDNA) and 16S/23S intergenic spacer regions; the outer membrane protein (omp) gene region; the trmU-tufB-secE-nusG-rplKAJL-rpoB region (gene cluster region); and the bacteriophage-type DNA polymerase region.
View Article and Find Full Text PDFABSTRACT Due to the lack of a means to inoculate plants mechanically, the histological dynamics and in planta spread of phytoplasmas have been studied very little. We analyzed the dynamics of plant infection by phytoplasmas, using a technique to infect a limited area of a leaf, nested polymerase chain reaction (PCR), real-time PCR, and immunohistochemical visualization. Following localized inoculation of a leaf of garland chrysanthemum (Chrysanthemum coronarium) by the vector leafhopper Macrosteles striifrons, the onion yellows (OY) phytoplasma spread within the plant from the inoculated leaf to the main stem (1 day postinoculation [dpi]), to the roots and the top leaf (2 dpi), and to other leaves from top to bottom (from 7 to 21 dpi).
View Article and Find Full Text PDFABSTRACT Antisera raised against phloem-limited phytoplasmas generally react only with the phytoplasma strain used to produce the antigen. There is a need for an antiserum that reacts with a variety of phytoplasmas. Here, we show that an antiserum raised against the SecA membrane protein of onion yellows phytoplasma, which belongs to the aster yellows 16S-group, detected eight phytoplasma strains from four distinct 16S-groups (aster yellows, western X, rice yellow dwarf, and elm yellows).
View Article and Find Full Text PDFSeveral lines of evidence suggest different allocations of the physiological roles of aminopropyl transferase genes, SPMS and ACL5 in plants. To get deeper insights into the physiological role of apple ACL5 (MdACL5), we performed yeast two-hybrid (Y2H) assay to identify proteins which interact with MdACL5. After intense screening processes, including the swapping of the bait and prey vectors and in vitro coimmunoprecipitation, we identified three MdACL5-interacting proteins: putative translation elongation factor 1A (eEF-1A), putative S-adenosyl-l-methionine synthetase (SAMS) and an unknown protein.
View Article and Find Full Text PDFA new tobamo-like virus was isolated from a greenhouse-grown cucumber that showed severe mosaic distortion on leaves and fruit, in the southern part of Japan. The virus was tentatively designated Cucumber mottle virus (CuMoV) and further characterized. The size and antigenicity of the coat protein (CP) and the complete sequence of the genome were compared with those of the known cucurbit-infecting tobamoviruses: the W and SH strains of Cucumber green mottle mosaic virus (CGMMV), the C and Y strains of Kyuri green mottle mosaic virus (KGMMV), Cucumber fruit mottle mosaic virus (CFMMV), and Zucchini green mottle mosaic virus (ZGMMV).
View Article and Find Full Text PDFPhytoplasmas are plant-pathogenic bacteria that cause numerous diseases. This study shows a strong positive selection on the phytoplasma antigenic membrane protein (Amp). The ratio of nonsynonymous to synonymous substitutions was >1 with all the methods we tested.
View Article and Find Full Text PDFA gene that encodes a putative SecE protein, which is a component of the Sec protein-translocation system, was cloned from the onion yellows phytoplasma (OY). The identification of this gene and the previously reported genes encoding SecA and SecY provides evidence that the Sec system exists in phytoplasma. In addition, a gene encoding an antigenic membrane protein (Amp) (a type of immunodominant membrane protein) of OY was cloned and sequenced.
View Article and Find Full Text PDFThe minimal gene set essential for life has long been sought. We report the 860-kb genome of the obligate intracellular plant pathogen phytoplasma (Candidatus Phytoplasma asteris, OY strain). The phytoplasma genome encodes even fewer metabolic functions than do mycoplasma genomes.
View Article and Find Full Text PDFIn addition to rice yellow dwarf (RYD) phytoplasma, several phytoplasmas infect gramineous plants, including rice orange leaf, bermuda grass white leaf, brachiaria grass white leaf and sugarcane white leaf phytoplasmas. To investigate whether the RYD phytoplasma is a discrete, species-level taxon, several isolates of the aforementioned phytoplasmas were analysed using PCR-amplified 16S rDNA sequences. Two RYD isolates, RYD-J(T) and RYD-Th, were almost identical (99.
View Article and Find Full Text PDFThymidylate kinase (TMK) catalyses the phosphorylation of dTMP to form dTDP in both the de novo and salvage pathways of dTTP synthesis in both prokaryotes and eukaryotes. Two homologues of bacterial thymidylate kinase genes were identified in a genomic library of the onion yellows (OY) phytoplasma, a plant pathogen that inhabits both plant phloem and the organs of insects. Southern blotting analysis suggested that the OY genome contained one copy of the tmk-b gene and multiple copies of the tmk-a gene.
View Article and Find Full Text PDFPhylogenetic relationships of five jujube witches'-broom (JWB) phytoplasma isolates from four different districts, and other phytoplasmas, were investigated by 16S rDNA PCR amplification and sequence analysis. The 16S rDNA sequences of any pair of the five isolates of JWB phytoplasmas were > 99.5% similar.
View Article and Find Full Text PDFPhytoplasmas are cell-wallless Gram-positive low G + C bacteria belonging to the Mollicutes that inhabit the cytoplasm of plants and insects. Although phytoplasmas possess two ribosomal RNA (rrn) operons, only one has been fully sequenced. Here, we determined the complete nucleotide sequence of both rrn operons (designated rrnA and rrnB) of onion yellows (OY) phytoplasma.
View Article and Find Full Text PDFTwo novel rolling circle replication (RCR) plasmids, pOYM (3932 nt) and pOYNIM (3062 nt), were isolated from a mildly pathogenic variant line (OY-M) and a mildly pathogenic plus non-insect-transmissible line (OY-NIM), respectively, of onion yellows (OY) phytoplasma, a plant and insect endocellular mollicute. OY-M was isolated from an original wild-type line (OY-W) after regular maintenance using alternate plant/insect infections, while OY-NIM was further isolated from OY-M after maintenance by plant grafting without insect vectors. The RCR-initiator proteins (Rep) of both plasmids, which have a characteristic structure with both plasmid- and virus-like domains, were highly homologous to that of a previously described OY-W plasmid, pOYW (3933 nt), and were expressed in OY-M- and OY-NIM-infected plants, indicating that this replicon is stably maintained in the phytoplasma.
View Article and Find Full Text PDFIn Korea, Japanese chestnut trees (Castanea crenata Sieb. and Zucc.) showing symptoms indicative of witches' broom disease, including abnormally small leaves and yellowing of young leaves, were examined.
View Article and Find Full Text PDFAn 11.4-kbp region of genomic DNA containing the complete S10-spc operon was constructed by an integrative mapping technique with eight plasmid vectors carrying ribosomal protein sequences from onion yellows phytoplasma. Southern hybridization analysis indicated that phytoplasmal S10-spc is a single-copy operon.
View Article and Find Full Text PDFRecombination among bacterial extrachromosomal DNAs (EC-DNAs) plays a major evolutionary role by creating genetic diversity, and provides the potential for rapid adaptation to new environmental conditions. Previously, a 7 kbp EC-DNA, EcOYW1, with a geminivirus-like rolling-circle-replication protein (Rep) gene was isolated and characterized from an original wild-type line (OY-W) of onion yellows (OY) phytoplasma, an endocellular cell-wall-less prokaryote that inhabits the cytoplasm of both plant and insect cells. EcOYW1, found in OY-W, was not present in a mild-symptom line (OY-M) derived from OY-W.
View Article and Find Full Text PDFA new extrachromosomal DNA, EcOYW1, was cloned from the onion yellows phytoplasma (OY-W). Southern blot and PCR analysis showed that EcOYW1 is not present in the OY-M, a mild symptom line derived from OY-W. We determined the complete nucleotide sequence of EcOYW1; it is a circular dsDNA of 7.
View Article and Find Full Text PDF