Stress induces global stabilization of the mRNA poly(A) tail (PAT) and the assembly of untranslated poly(A)-tailed mRNA into mRNPs that accumulate in stress granules (SGs). While the mechanism behind stress-induced global PAT stabilization has recently emerged, the biological significance of PAT stabilization under stress remains elusive. Here, we demonstrate that stress-induced PAT stabilization is a prerequisite for SG formation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2024
The RNA-binding protein PKR serves as a crucial antiviral innate immune factor that globally suppresses translation by sensing viral double-stranded RNA (dsRNA) and by phosphorylating the translation initiation factor eIF2α. Recent findings have unveiled that single-stranded RNAs (ssRNAs), including in vitro transcribed (IVT) mRNA, can also bind to and activate PKR. However, the precise mechanism underlying PKR activation by ssRNAs, remains incompletely understood.
View Article and Find Full Text PDFDuring early embryonic development, the RNA-binding protein CPEB mediates cytoplasmic polyadenylation and translational activation through a combinatorial code defined by the cy-toplasmic polyadenylation element (CPE) present in maternal mRNAs. However, in non-neuronal somatic cells, CPEB accelerates deadenylation to repress translation of the target, including c-myc mRNA, through an ill-defined cis-regulatory mechanism. Using RNA mutagenesis and electrophoretic mobility shift assays, we demonstrated that a combination of tandemly arranged consensus (cCPE) and non-consensus (ncCPE) cytoplasmic polyadenylation elements (CPEs) constituted a combinatorial code for CPEB-mediated c-myc mRNA decay.
View Article and Find Full Text PDFPoly(A) tail metabolism contributes to post-transcriptional regulation of gene expression. Here, we present a protocol for analyzing intact mRNA poly(A) tail length using nanopore direct RNA sequencing, which excludes truncated RNAs from the measurement. We describe steps for preparing recombinant eIF4E mutant protein, purifying m7G- capped RNAs, library preparation, and sequencing.
View Article and Find Full Text PDFTranslation of 5' terminal oligopyrimidine (TOP) mRNAs encoding the protein synthesis machinery is strictly regulated by an amino-acid-sensing mTOR pathway. However, its regulatory mechanism remains elusive. Here, we demonstrate that TOP mRNA translation positively correlates with its poly(A) tail length under mTOR active/amino-acid-rich conditions, suggesting that TOP mRNAs are post-transcriptionally controlled by poly(A) tail-length regulation.
View Article and Find Full Text PDFEukaryotic mRNAs possess a poly(A) tail at their 3'-end, to which poly(A)-binding protein C1 (PABPC1) binds and recruits other proteins that regulate translation. Enhanced poly(A)-dependent translation, which is also PABPC1 dependent, promotes cellular and viral proliferation. PABP-interacting protein 2A (Paip2A) effectively represses poly(A)-dependent translation by causing the dissociation of PABPC1 from the poly(A) tail; however, the underlying mechanism remains unknown.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2021
The RNA-binding protein Ataxin-2 regulates translation and mRNA stability through cytoplasmic polyadenylation of the targets. Here we newly identified DDX6 as a positive regulator of the cytoplasmic polyadenylation. Analysis of Ataxin-2 interactome using LC-MS/MS revealed prominent interaction with the DEAD-box RNA helicase DDX6.
View Article and Find Full Text PDFThe RNA-binding protein Ataxin-2 binds to and stabilizes a number of mRNA sequences, including that of the transactive response DNA-binding protein of 43 kDa (TDP-43). Ataxin-2 is additionally involved in several processes requiring translation, such as germline formation, long-term habituation, and circadian rhythm formation. However, it has yet to be unambiguously demonstrated that Ataxin-2 is actually involved in activating the translation of its target mRNAs.
View Article and Find Full Text PDFMicroRNA-122 (miR-122) is highly expressed in hepatocytes, where it plays an important role in regulating cholesterol and fatty acid metabolism, and it is also a host factor required for hepatitis C virus replication. miR-122 is selectively stabilized by 3' adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2 (also known as PAPD4 or TENT2). However, it is unclear how GLD-2 specifically stabilizes miR-122.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate gene expression at post-transcriptional level via translational repression and/or mRNA degradation. miRNAs are associated with many cellular processes, and down-regulation of miRNAs causes numerous diseases including cancer, neurological disorders, inflammation, and cardiovascular diseases, for which miRNA replacement therapy has emerged as a promising approach. This approach aims to restore down-regulated miRNAs using synthetic miRNA mimics.
View Article and Find Full Text PDFTAR DNA-binding protein 43 (TDP-43) is an RNA-binding protein, whose loss-of-function mutation causes amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. Recent studies demonstrated that TDP-43 binds to the 3' untranslated region (UTR) of target mRNAs to promote mRNA instability. Here, we show that TDP-43 recruits Caf1 deadenylase to mRNA targets and accelerates their deadenylation.
View Article and Find Full Text PDFThe 2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway is an innate immune system that protects hosts against pathogenic viruses and bacteria through cleavage of exogenous single-stranded RNA; however, this system's selective targeting mechanism remains unclear. Here, we identified an mRNA quality control factor Dom34 as a novel restriction factor for a positive-sense single-stranded RNA virus. Downregulation of Dom34 and RNase L increases viral replication, as well as half-life of the viral RNA.
View Article and Find Full Text PDFThe yeast Saccharomyces cerevisiae has proven to be a useful model system to investigate the mechanism of prion generation and inheritance, to which studies in Sup35 made a great contribution. Recent studies demonstrated that 'protein misfolding and aggregation' (i.e.
View Article and Find Full Text PDFMicroRNAs are small noncoding RNAs that regulate translation and mRNA stability by binding target mRNAs in complex with Argonaute (AGO) proteins. AGO interacts with a member of the TNRC6 family proteins to form a microRNP complex, which recruits the CCR4-NOT complex to accelerate deadenylation and inhibits translation. MicroRNAs primarily repress translation of target mRNAs but have been shown to enhance translation of a specific type of target reporter mRNAs in various experimental systems: G0 quiescent mammalian cells, Xenopus laevis oocytes, Drosophila embryo extracts, and HeLa cells.
View Article and Find Full Text PDFEukaryotic mature mRNAs possess a poly adenylate tail (poly(A)), to which multiple molecules of poly(A)-binding protein C1 (PABPC1) bind. PABPC1 regulates translation and mRNA metabolism by binding to regulatory proteins. To understand functional mechanism of the regulatory proteins, it is necessary to reveal how multiple molecules of PABPC1 exist on poly(A).
View Article and Find Full Text PDFPrions are infectious proteins that cause fatal neurodegenerative disorders including Creutzfeldt-Jakob and bovine spongiform encephalopathy (mad cow) diseases. The yeast [] prion is formed by the translation-termination factor Sup35, is the best-studied prion, and provides a useful model system for studying such diseases. However, despite recent progress in the understanding of prion diseases, the cellular defense mechanism against prions has not been elucidated.
View Article and Find Full Text PDFHepatitis B virus (HBV) is a stealth virus, minimally inducing the interferon system required for efficient induction of both innate and adaptive immune responses. However, 90% of acutely infected adults can clear the virus, suggesting the presence of other, interferon-independent pathways leading to viral clearance. Given the known ability of helicases to bind viral nucleic acids, we performed a functional screening assay to identify helicases that regulate HBV replication.
View Article and Find Full Text PDFEmerging evidence has demonstrated that regulating the length of the poly(A) tail on an mRNA is an efficient means of controlling gene expression at the post-transcriptional level. In early development, transcription is silenced and gene expression is primarily regulated by cytoplasmic polyadenylation. In somatic cells, considerable progress has been made toward understanding the mechanisms of negative regulation by deadenylation.
View Article and Find Full Text PDFThe involvement of polypeptide chain-releasing factor eRF3 in translation termination and mRNA decay is well established. Moreover, the finding that the proteolytically processed isoform of eRF3 (p-eRF3) interacts with inhibitors of apoptosis proteins (IAPs) to activate caspase, implies that eRF3 is a cell death regulator. However, the protease(s) responsible for p-eRF3 production and how p-eRF3 regulates apoptosis remain unknown.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2014
The poly(A) tail of mRNAs plays pivotal roles in the posttranscriptional control of gene expression at both translation and mRNA stability. Recent findings demonstrate that the poly(A) tail is globally stabilized by some stresses. However, the mechanism underlying this phenomenon has not been elucidated.
View Article and Find Full Text PDFThe eukaryotic releasing factor eRF3 is a multifunctional protein that plays pivotal roles in translation termination as well as the initiation of mRNA decay. eRF3 also functions in the regulation of apoptosis; eRF3 is cleaved at Ala73 by an as yet unidentified protease into processed isoform of eRF3 (p-eRF3), which interacts with the inhibitors of apoptosis proteins (IAPs). The binding of p-eRF3 with IAPs leads to the release of active caspases from IAPs, which promotes apoptosis.
View Article and Find Full Text PDFIn yeast, aberrant mRNAs lacking in-frame termination codons are recognized and degraded by the non-stop decay (NSD) pathway. The recognition of non-stop mRNAs involves a member of the eRF3 family of GTP-binding proteins, Ski7. Ski7 is thought to bind the ribosome stalled at the 3'-end of the mRNA poly(A) tail and recruit the exosome to degrade the aberrant message.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2013
Non-canonical poly(A) polymerases (ncPAPs) catalyze the addition of poly(A) tail to the 3' end of RNA to play pivotal roles in the regulation of gene expression and also in quality control. Here we identified a novel isoform of the 7th member of ncPAPs: PAPD7 (PAPD7 l), which contains 230 extra amino acids at the amino terminus of the previously identified PAPD7 (PAPD7 s). In sharp contrast to the inactive PAPD7 s, PAPD7 l showed robust nucleotidyl transferase activity when tethered to an RNA.
View Article and Find Full Text PDFPolypeptide chain release factor eRF3 plays pivotal roles in translation termination and post-termination events including ribosome recycling and mRNA decay. It is not clear, however, if eRF3 is targeted for the regulation of gene expression. Here we show that DNA-damaging agents (UV and etoposide) induce the immediate cleavage and degradation of eRF3 in a caspase-dependent manner.
View Article and Find Full Text PDF