Artificial intelligence (AI) is an emerging technology that is revolutionizing the discovery of new materials. One key application of AI is virtual screening of chemical libraries, which enables the accelerated discovery of materials with desired properties. In this study, we developed computational models to predict the dispersancy efficiency of oil and lubricant additives, a critical property in their design that can be estimated through a quantity named blotter spot.
View Article and Find Full Text PDFThe exceptional versatility of sulfones has been extensively exploited in organic synthesis across several decades. Since the first demonstration in 2005 that sulfones can participate in Pd-catalysed Suzuki-Miyaura type reactions, tremendous advances in catalytic desulfitative functionalizations have opened a new area of research with burgeoning activity in recent years. This emerging field is displaying sulfone derivatives as a new class of substrates enabling catalytic C-C and C-X bond construction.
View Article and Find Full Text PDFA method for the annulation of amines and carboxylic acids to form pharmaceutically relevant azaheterocycles via organophosphorus P/P redox catalysis is reported. The method employs a phosphetane catalyst together with a mild bromenium oxidant and terminal hydrosilane reductant to drive successive C-N and C-C bond-forming dehydration events via the serial action of a catalytic bromophosphonium intermediate. These results demonstrate the capacity of P/P redox catalysis to enable iterative redox-neutral transformations in complement to the common reductive driving force of the P/P couple.
View Article and Find Full Text PDFA method for electrophilic sulfenylation by organophosphorus-catalyzed deoxygenative O-atom transfer from sulfonyl chlorides is reported. This C-S bond-forming reaction is catalyzed by a readily available small-ring phosphine (phosphetane) in conjunction with a hydrosilane terminal reductant to afford a general entry to sulfenyl electrophiles, including valuable trifluoromethyl, perfluoroalkyl, and heteroaryl derivatives that are otherwise difficult to access. Mechanistic investigations indicate that the twofold deoxygenation of the sulfonyl substrate proceeds by the intervention of an off-cycle resting state thiophosphonium ion.
View Article and Find Full Text PDF