Publications by authors named "Shin-Ho Chung"

Molecular dynamics simulations are employed to determine the inhibitory mechanisms of three drugs, 5-(4-phenoxybutoxy)psoralen (PAP-1), vernakalant, and flecainide, on the voltage-gated K channel Kv1.5, a target for the treatment of cardiac arrhythmia. At neutral pH, PAP-1 is neutral, whereas the other two molecules carry one positive charge.

View Article and Find Full Text PDF

Mutations of hNa1.7 that cause its activities to be enhanced contribute to severe neuropathic pain. Only a small number of hNa1.

View Article and Find Full Text PDF

Tertiapin (TPN), a short peptide isolated from the venom of the honey bee, is a potent and selective blocker of the inward rectifier K (Kir) channel Kir3.2. Here we examine in atomic detail the binding mode of TPN to Kir3.

View Article and Find Full Text PDF
Article Synopsis
  • Four new star polymers were designed using computer simulations to mimic scorpion toxins and reduce ionic currents through biological ion channels, specifically targeting mammalian K+ channels.
  • The polymers were synthesized with 4 arms made of ethylene glycol, each ending with lysine or a tripeptide, which were found to physically block the Kv1.3 channel associated with immuno-suppression.
  • Two of the synthesized polymers showed strong inhibitory effects on Kv1.3, with calculated dissociation constants close to experimental values, highlighting the effectiveness of computational design in developing new drug candidates.
View Article and Find Full Text PDF

Small peptides isolated from the venom of animals are potential scaffolds for ion channel drug discovery. This review article mainly focuses on the computational studies that have advanced our understanding of how various toxins interfere with the function of K⁺ channels. We introduce the computational tools available for the study of toxin-channel interactions.

View Article and Find Full Text PDF

Molecular dynamics simulations are used to gain insight into the binding of Na(+) and leucine substrate to the bacterial amino acid transporter LeuT, focusing on the crystal structures of LeuT in the outward-open and inward-open states. For both conformations of LeuT, a third Na(+) binding site involving Glu290 in addition to the two sites identified from the crystal structures is observed. Once the negative charge from Glu290 in the inward-open LeuT is removed, the ion bound to the third site is ejected from LeuT rapidly, suggesting that the protonation state of Glu290 regulates Na(+) binding and release.

View Article and Find Full Text PDF

Many drug molecules inhibit the conduction of several families of cation channels by binding to a small cavity just below the selectivity filter of the channel protein. The exact mechanisms governing drug-channel binding and the subsequent inhibition of conduction are not well understood. Here the inhibition of two K(+) channel isoforms, Kv1.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations are used to examine the binding modes of two scorpion toxins, margatoxin (MgTx) and hongotoxin (HgTx), to the voltage gated K+ channel, Kv1.3. Using steered MD simulations, we insert either Lys28 or Lys35 of the toxins into the selectivity filter of the channel.

View Article and Find Full Text PDF

Multi-drug resistance is becoming an increasing problem in the treatment of bacterial infections and diseases. The mechanosensitive channel of large conductance (MscL) is highly conserved among prokaryotes. Evidence suggests that a pharmacological agent that can affect the gating of, or block the current through, MscL has significant potential as a new class of antimicrobial compound capable of targeting a range of pathogenic bacteria with minimal side-effects to infected patients.

View Article and Find Full Text PDF

Several subtypes of voltage-gated Na+ (NaV) channels are important targets for pain management. μ-Conotoxins isolated from venoms of cone snails are potent and specific blockers of different NaV channel isoforms. The inhibitory effect of μ-conotoxins on NaV channels has been examined extensively, but the mechanism of toxin specificity has not been understood in detail.

View Article and Find Full Text PDF

Tetrodotoxin (TTX) has been used for many decades to characterize the structure and function of biological ion channels. Yet, the precise mechanism by which TTX blocks voltage-gated sodium (NaV) channels is not fully understood. Here molecular dynamics simulations are used to elucidate how TTX blocks mammalian voltage-gated sodium (Nav) channels and why it fails to be effective for the bacterial sodium channel, NaVAb.

View Article and Find Full Text PDF

There is clear evidence that the net magnitude of negative charge at the intracellular end of inwardly rectifying potassium channels helps to generate an asymmetry in the magnitude of the current that will pass in each direction. However, a complete understanding of the physical mechanism that links these charges to current rectification has yet to be obtained. Using Brownian dynamics, we compare the conduction mechanism and binding sites in rectifying and non-rectifying channel models.

View Article and Find Full Text PDF

The Ca(2+)-activated channel of intermediate-conductance (KCa3.1) is a target for antisickling and immunosuppressant agents. Many small peptides isolated from animal venoms inhibit KCa3.

View Article and Find Full Text PDF

Fullerene derivatives demonstrate considerable potential for numerous biological applications, such as the effective inhibition of HIV protease. Recently, they were identified for their ability to indiscriminately block biological ion channels. A fullerene derivative which specifically blocks a particular ion channel could lead to a new set of drug leads for the treatment of various ion channel-related diseases.

View Article and Find Full Text PDF

The N-type voltage-gated Ca(2+) channel CaV2.2 is one of the important targets for pain management. ω-Conotoxins isolated from venoms of cone snails, which specifically inhibit CaV2.

View Article and Find Full Text PDF

The discovery of new drugs that selectively block or modulate ion channels has great potential to provide new treatments for a host of conditions. One promising avenue revolves around modifying or mimicking certain naturally occurring ion channel modulator toxins. This strategy appears to offer the prospect of designing drugs that are both potent and specific.

View Article and Find Full Text PDF

Various gating modifier toxins partition into membranes and interfere with the gating mechanisms of biological ion channels. For example, GsMTx4 potentiates gramicidin and several bacterial mechanosensitive channels whose gating kinetics are sensitive to mechanical properties of the membrane, whereas binding of HpTx2 shifts the voltage-activity curve of the voltage-gated potassium channel Kv4.2 to the right.

View Article and Find Full Text PDF

Dysfunction of Kir2.1, thought to be the major component of inward currents, I(K1), in the heart, has been linked to various channelopathies, such as short Q-T syndrome. Unfortunately, currently no known blockers of Kir2.

View Article and Find Full Text PDF

Hanatoxin 1 (HaTx1) is a polypeptide toxin isolated from spider venoms. HaTx1 inhibits the voltage-gated potassium channel kv2.1 potently with nanomolar affinities.

View Article and Find Full Text PDF

Carbon nanotubes offer exciting opportunities for devising highly-sensitive detectors of specific molecules in biology and the environment. Detection limits as low as 10(-11) M have already been achieved using nanotube-based sensors. We propose the design of a biosensor comprised of functionalized carbon nanotube pores embedded in a silicon-nitride or other membrane, fluorofullerene-Fragment antigen-binding (Fab fragment) conjugates, and polymer beads with complementary Fab fragments.

View Article and Find Full Text PDF

We present new Brownian dynamics techniques for studying blockers of ion channels. By treating the channel as a fixed body, simulating the blocker molecules using rigid bodies, and using an implicit water force field with explicit ions, we are able to carry out fast simulations that can be used to investigate the dynamics of block and unblock, deduce binding modes, and calculate binding affinities. We test our program using the NavAb bacterial sodium channel, whose structure was recently solved (Payandeh et al.

View Article and Find Full Text PDF

The 34-residue polypeptide maurotoxin (MTx) isolated from scorpion venoms selectively inhibits the current of the voltage-gated potassium channel Kv1.2 by occluding the ion conduction pathway. Here using molecular dynamics simulation as a docking method, the binding modes of MTx to three closely related channels (Kv1.

View Article and Find Full Text PDF

Using the recently unveiled crystal structure, and molecular and Brownian dynamics simulations, we elucidate several conductance properties of the inwardly rectifying potassium channel, Kir3.2, which is implicated in cardiac and neurological disorders. We show that the pore is closed by a hydrophobic gating mechanism similar to that observed in Kv1.

View Article and Find Full Text PDF

Scorpion α-toxins bind to the voltage-sensing domains of voltage-gated sodium (Na(V)) channels and interfere with the inactivation mechanisms. The functional surface of α-toxins has been shown to contain an NC-domain consisting of the five-residue turn (positions 8-12) and the C-terminus (positions 56-64) and a core-domain centered on the residue 18. The NC- and core-domains are interconnected by the linker-domain (positions 8-18).

View Article and Find Full Text PDF

Scorpion β-toxins bind to the voltage-sensing domain of voltage-gated sodium (NaV) channels and trap the voltage-sensing domain in the activated state. Two structurally similar β-toxins from scorpions, Css4 and Cn2, selectively target different subtypes of mammalian NaV channels. While the receptor site on the channels is known, the functional surface of the toxins remains to be understood.

View Article and Find Full Text PDF