Memory T cells demonstrate superior in vivo persistence and antitumor efficacy. However, methods for manufacturing less differentiated T cells are not yet well-established. Here, we show that producing chimeric antigen receptor (CAR)-T cells using berbamine (BBM), a natural compound found in the Chinese herbal medicine Berberis amurensis, enhances the antitumor efficacy of CAR-T cells.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2023
Allogeneic T cell platforms utilizing induced pluripotent stem cell (iPSC) technology exhibit significant promise for the facilitation of adoptive immunotherapies. While mature T cell receptor (TCR) signaling plays a crucial role in generating T cells from iPSCs, the introduction of exogenous mature TCR genes carries a potential risk of causing graft-versus-host disease (GvHD). In this study, we present the development of truncated TCRα and TCRβ chains, termed mini-TCRs, which lack variable domains responsible for recognizing human leukocyte antigen (HLA)-peptide complexes.
View Article and Find Full Text PDFIt is critical to understand how human quiescent long-term hematopoietic stem cells (LT-HSCs) sense demand from daily and stress-mediated cues and then transition into bioenergetically active progeny to differentiate and meet these cellular needs. However, the demand-adapted regulatory circuits of these early steps of hematopoiesis are largely unknown. Here we show that lysosomes, sophisticated nutrient-sensing and signaling centers, are regulated dichotomously by transcription factor EB (TFEB) and MYC to balance catabolic and anabolic processes required for activating LT-HSCs and guiding their lineage fate.
View Article and Find Full Text PDFContinuous supply of immune cells throughout life relies on the delicate balance in the hematopoietic stem cell (HSC) pool between long-term maintenance and meeting the demands of both normal blood production and unexpected stress conditions. Here we identified distinct subsets of human long-term (LT)-HSCs that responded differently to regeneration-mediated stress: an immune checkpoint ligand CD112 subset that exhibited a transient engraftment restraint (termed latency) before contributing to hematopoietic reconstitution and a primed CD112 subset that responded rapidly. This functional heterogeneity and CD112 expression are regulated by INKA1 through direct interaction with PAK4 and SIRT1, inducing epigenetic changes and defining an alternative state of LT-HSC quiescence that serves to preserve self-renewal and regenerative capacity upon regeneration-mediated stress.
View Article and Find Full Text PDFGenetic engineering of induced pluripotent stem cells (iPSCs) holds great promise for gene and cell therapy as well as drug discovery. However, there are potential concerns regarding the safety and control of gene expression using conventional vectors such as viruses and plasmids. Although human artificial chromosome (HAC) vectors have several advantages as a gene delivery vector, including stable episomal maintenance and the ability to carry large gene inserts, the full potential of HAC transfer into iPSCs still needs to be explored.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a caricature of normal hematopoiesis, driven from leukemia stem cells (LSC) that share some hematopoietic stem cell (HSC) programs including responsiveness to inflammatory signaling. Although inflammation dysregulates mature myeloid cells and influences stemness programs and lineage determination in HSC by activating stress myelopoiesis, such roles in LSC are poorly understood. Here, we show that S1PR3, a receptor for the bioactive lipid sphingosine-1-phosphate, is a central regulator which drives myeloid differentiation and activates inflammatory programs in both HSC and LSC.
View Article and Find Full Text PDFLifelong blood production requires long-term hematopoietic stem cells (LT-HSCs), marked by stemness states involving quiescence and self-renewal, to transition into activated short-term HSCs (ST-HSCs) with reduced stemness. As few transcriptional changes underlie this transition, we used single-cell and bulk assay for transposase-accessible chromatin sequencing (ATAC-seq) on human HSCs and hematopoietic stem and progenitor cell (HSPC) subsets to uncover chromatin accessibility signatures, one including LT-HSCs (LT/HSPC signature) and another excluding LT-HSCs (activated HSPC [Act/HSPC] signature). These signatures inversely correlated during early hematopoietic commitment and differentiation.
View Article and Find Full Text PDFCellular stress responses serve as crucial decision points balancing persistence or culling of hematopoietic stem cells (HSCs) for lifelong blood production. Although strong stressors cull HSCs, the linkage between stress programs and self-renewal properties that underlie human HSC maintenance remains unknown, particularly at quiescence exit when HSCs must also dynamically shift metabolic state. Here, we demonstrate distinct wiring of the sphingolipidome across the human hematopoietic hierarchy and find that genetic or pharmacologic modulation of the sphingolipid enzyme DEGS1 regulates lineage differentiation.
View Article and Find Full Text PDFThere is a growing body of evidence that the molecular properties of leukemia stem cells (LSCs) are associated with clinical outcomes in acute myeloid leukemia (AML), and LSCs have been linked to therapy failure and relapse. Thus, a better understanding of the molecular mechanisms that contribute to the persistence and regenerative potential of LSCs is expected to result in the development of more effective therapies. We therefore interrogated functionally validated data sets of LSC-specific genes together with their known protein interactors and selected 64 candidates for a competitive in vivo gain-of-function screen to identify genes that enhanced stemness in human cord blood hematopoietic stem and progenitor cells.
View Article and Find Full Text PDFChromosomal rearrangements deregulating hematopoietic transcription factors are common in acute lymphoblastic leukemia (ALL). Here we show that deregulation of the homeobox transcription factor gene DUX4 and the ETS transcription factor gene ERG is a hallmark of a subtype of B-progenitor ALL that comprises up to 7% of B-ALL. DUX4 rearrangement and overexpression was present in all cases and was accompanied by transcriptional deregulation of ERG, expression of a novel ERG isoform, ERGalt, and frequent ERG deletion.
View Article and Find Full Text PDFSignaling mechanisms underlying self-renewal of leukemic stem cells (LSCs) are poorly understood, and identifying pathways specifically active in LSCs could provide opportunities for therapeutic intervention. T-cell immunoglobin mucin-3 (TIM-3) is expressed on the surface of LSCs in many types of human acute myeloid leukemia (AML), but not on hematopoietic stem cells (HSCs). Here, we show that TIM-3 and its ligand, galectin-9 (Gal-9), constitute an autocrine loop critical for LSC self-renewal and development of human AML.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) originates from self-renewing leukemic stem cells (LSCs), an ultimate therapeutic target for AML. Here we identified T cell immunoglobulin mucin-3 (TIM-3) as a surface molecule expressed on LSCs in most types of AML except for acute promyelocytic leukemia, but not on normal hematopoietic stem cells (HSCs). TIM-3(+) but not TIM-3⁻ AML cells reconstituted human AML in immunodeficient mice, suggesting that the TIM-3(+) population contains most, if not all, of functional LSCs.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) reside in a bone marrow niche in a nondividing state from which they occasionally are aroused to undergo cell division. Yet, the mechanism underlying this unique feature remains largely unknown. We have recently shown that freshly isolated CD34-KSL hematopoietic stem cells (HSCs) in a hibernation state exhibit inhibited lipid raft clustering.
View Article and Find Full Text PDFInterleukin (IL)-27, one of the most recently discovered IL-6 family cytokines, activates both the signal transducer and activator of transcription (STAT)1 and STAT3, and plays multiple roles in pro- and anti-inflammatory immune responses. IL-27 acts on various types of cells including T, B, and macrophage through the common signal-transducing receptor gp130 and its specific receptor WSX-1, but the effect of IL-27 on hematopoietic stem cells (HSCs) remains unknown. Here, we show that IL-27 together with stem cell factor (SCF) directly acts on HSCs and supports their early differentiation in vitro and in vivo.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) reside in the bone marrow (BM) niche in a noncycling state and enter the cell cycle at long intervals. However, little is known about inter- and intracellular signaling mechanisms underlying this unique property of HSCs. Here, we show that lipid raft clustering is a key event in the regulation of HSC dormancy.
View Article and Find Full Text PDFVasculogenesis and hematopoiesis are thought to arise in hemangioblasts, the common progenitors of cells in vessels and in blood. This scheme was challenged by kinetic analysis of vascular endothelial and hematopoietic progenitors in early gastrulating mouse embryos. The OP-9 co-culture system with a combination of cytokines permitted the detection of endothelial progenitors, as well as stroma-dependent hematopoietic progenitors.
View Article and Find Full Text PDFUsing an in silico database search, we identified a novel gene encoding a cell surface molecule with a thrombospondin domain, and designated the gene as transmembrane molecule with thrombospondin module (Tmtsp). Expression profiling of Tmtsp using specific monoclonal antibodies and Venus, a variant of yellow fluorescent protein knock-in mice in the Tmtsp locus, demonstrated its specific expression in hematopoietic and endothelial cells. In lymphohematopoietic cells, Tmtsp was predominantly expressed in hematopoietic stem and progenitor cells, and the level of expression gradually declined as the cells differentiated.
View Article and Find Full Text PDFHuman ATP-binding cassette (ABC) transporter genes are classified into seven sub-families, where "C" subfamily comprises a total of 13 gene members. The ABCC10 cDNA was cloned in the human full-length cDNA project at the Kazusa DNA Research Institute. However, current information is limited regarding its physiological function and gene expression.
View Article and Find Full Text PDFThe human ABCC1 gene, a member of the ATP-binding cassette transporter super-family, plays a critical role in conferring cancer cell resistance to chemotherapeutic drugs. In the present study, we have cloned the full-length cDNA of rat Abcc1 and evaluated its significance in drug resistance. Analysis using the currently available genome database revealed that the rat Abcc1 gene is located on rat chromosome 13 and consists of at least 30 exons.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2002
In the present study, we have cloned the cDNA of ABCC13, a novel ABC transporter, from the cDNA library of adult human placenta. The ABCC13 gene spans approximately 70kb on human chromosome 21q11.2 and consists of 14 exons.
View Article and Find Full Text PDF