Publications by authors named "Shin Won Kim"

This study proposes a novel process that integrates the molding and patterning of solid-state polymers with the force generated from the volume expansion of the microcellular-foaming process (MCP) and the softening of solid-state polymers due to gas adsorption. The batch-foaming process, which is one of the MCPs, is a useful process that can cause thermal, acoustic, and electrical characteristic changes in polymer materials. However, its development is limited due to low productivity.

View Article and Find Full Text PDF

This study investigates the properties of a polymer-gas mixture formed through diffusion, based on the changes in the partial pressure and observed changes in the impact and tensile strengths owing to the gas dissolution. The high-pressure gas dissolves into a solid-state polymer through diffusion based on the difference in the partial pressure. This dissolved gas is present in the amorphous region within the polymeric material temporarily, which results in the polymer exhibiting different mechanical properties, while the gas remains dissolved in the polymer.

View Article and Find Full Text PDF

This study analyzes the fundamental principles and characteristics of the microcellular foaming process (MCP) to minimize warpage in glass fiber reinforced polymer (GFRP), which is typically worse than that of a solid polymer. In order to confirm the tendency for warpage and the improvement of this phenomenon according to the glass fiber content (GFC), two factors associated with the reduction of the shrinkage difference and the non-directionalized fiber orientation were set as variables. The shrinkage was measured in the flow direction and transverse direction, and it was confirmed that the shrinkage difference between these two directions is the cause of warpage of GFRP specimens.

View Article and Find Full Text PDF

OBJECTIVE There has been no established animal model of syringomyelia associated with lumbosacral spinal lipoma. The research on the pathophysiology of syringomyelia has been focused on Chiari malformation, trauma, and inflammation. To understand the pathophysiology of syringomyelia associated with occult spinal dysraphism, a novel animal model of syringomyelia induced by chronic mechanical compression of the lumbar spinal cord was created.

View Article and Find Full Text PDF

Purpose: Terminal myelocystocele (TMC) is thought to be caused by a misstep during secondary neurulation. However, due to the paucity of data on secondary neurulation and the rarity of TMC, proofs of this pathogenetic mechanism are unavailable. Based on a previous observation that TMC resembles a step of secondary neurulation in chick, a closer look was taken at secondary neurulation of chick embryos focusing on the cerebrospinal fluid-filled distal neural tube (terminal balloon).

View Article and Find Full Text PDF

The purpose of this study was to generate tissue-engineered bone using human periosteal-derived osteoblasts (PO) and polydioxanone/pluronic F127 (PDO/pluronic F127) scaffold with preseeded human periosteal-derived CD146 positive endothelial-like cells (PE). PE were purified from the periosteal cell population by cell sorting. One of the important factors to consider in generating tissue-engineered bone using osteoprecursor and endothelial cells and a specific scaffold is whether the function of osteoprecursor and endothelial cells can be maintained in originally different culture medium conditions.

View Article and Find Full Text PDF