Microbes have evolved intricate communication systems that enable individual cells of a population to send and receive signals in response to changes in their immediate environment. In the fission yeast Schizosaccharomyces pombe, the oxylipin nitrogen signaling factor (NSF) is part of such communication system, which functions to regulate the usage of different nitrogen sources. Yet, the pathways and mechanisms by which NSF acts are poorly understood.
View Article and Find Full Text PDFMethylotrophic yeasts can utilize methanol as the sole carbon and energy source, and the expression of their methanol-induced genes is regulated based on the environmental methanol concentration. Our understanding of the function of transcription factors and Wsc family of proteins in methanol-induced gene expression and methanol sensing is expanding, but the methanol signal transduction mechanism remains undetermined. Our study has revealed that the transcription factor KpMxr1 is involved in the concentration-regulated methanol induction (CRMI) in Komagataella phaffii (Pichia pastoris) and that the phosphorylation state of KpMxr1 changes based on methanol concentration.
View Article and Find Full Text PDFThe methylotrophic yeast can grow on methanol with an associated proliferation of peroxisomes, which are subsequently degraded by pexophagy upon depletion of methanol. Two cell wall integrity and stress response component (WSC) family proteins (Wsc1 and Wsc3) sense the extracellular methanol concentration and transmit the methanol signal to Rom2. This stimulates the activation of transcription factors (Mxr1, Trm1, and Mit1 etc.
View Article and Find Full Text PDFIn nature, methanol is produced during the hydrolysis of pectin in plant cell walls. Methanol on plant leaves shows circadian dynamics, to which methanol-utilizing phyllosphere microorganisms adapt. In the methylotrophic yeast Komagataella phaffii (Kp; also known as Pichia pastoris), the plasma membrane protein KpWsc1 senses environmental methanol concentrations and transmits this information to induce the expression of genes for methanol metabolism and the formation of huge peroxisomes.
View Article and Find Full Text PDFThe moment arm of gluteus medius proportionated to distance from femoral head tends to be decreased postoperatively in valgus-impacted femoral neck fractures treated by in situ internal fixation. The aim of this article is to introduce a new gentle technique to correct the deformity. The innovative technique of Minimally Invasive Closed Reduction for Impacted Femoral neck fractures (MICRIF) mainly focused to disimpact valgus neck fractures into anatomical position.
View Article and Find Full Text PDFIn methylotrophic yeasts, the expression of methanol-inducible genes is repressed by ethanol even in the presence of methanol, a phenomenon called ethanol repression. The mechanism of ethanol repression in Komagataella phaffii (Pichia pastoris) was studied, and acetyl-CoA synthesis from ethanol by sequential reactions of alcohol dehydrogenase, aldehyde dehydrogenase and acetyl-CoA synthetase (ACS) was involved in ethanol repression. Molecular analysis of the ACS-encoding gene product KpAcs1 revealed that its N-terminal motif, which is conserved in methylotrophic yeasts, was required for ethanol repression.
View Article and Find Full Text PDFWsc family proteins are plasma membrane spanning sensor proteins conserved from yeasts to mammalian cells. We studied the functional roles of Wsc family proteins in the methylotrophic yeast Pichia pastoris, and found that PpWsc1 and PpWsc3 function as methanol-sensors during growth on methanol. PpWsc1 responds to a lower range of methanol concentrations than PpWsc3.
View Article and Find Full Text PDF