Voltage-sensing phosphatase (VSP) exhibits voltage-dependent phosphatase activity toward phosphoinositides. VSP generates a specialized phosphoinositide environment in mammalian sperm flagellum. However, the voltage-sensing mechanism of VSP in spermatozoa is not yet characterized.
View Article and Find Full Text PDFPurpose: Penile research is expected to reveal new targets for treatment and prevention of the complex mechanisms of its disorder including erectile dysfunction (ED). Thus, analyses of the molecular processes of penile ED and continuous erection as priapism are essential issues of reproductive medicine.
Methods: By performing mouse N-ethyl-N-nitrosourea mutagenesis and exome sequencing, we established a novel mouse line displaying protruded genitalia phenotype (PGP; priapism-like phenotype) and identified a novel gene mutation for PGP.
Phosphoinositides are a family of membrane lipids essential for many biological and pathological processes. Due to the existence of multiple phosphoinositide regioisomers and their low intracellular concentrations, profiling these lipids and linking a specific acyl variant to a change in biological state have been difficult. To enable the comprehensive analysis of phosphoinositide phosphorylation status and acyl chain identity, we develop PRMC-MS (Phosphoinositide Regioisomer Measurement by Chiral column chromatography and Mass Spectrometry).
View Article and Find Full Text PDFMale penis is required to become erect during copulation. In the upper (dorsal) part of penis, the erectile tissue termed corpus cavernosum (CC) plays fundamental roles for erection by regulating the inner blood flow. When blood flows into the CC, the microvascular complex termed sinusoidal space is reported to expand during erection.
View Article and Find Full Text PDFThe voltage-sensing phosphatase (VSP) is a unique protein that shows voltage-dependent phosphoinositide phosphatase activity. Here we report that VSP is activated in mice sperm flagellum and generates a unique subcellular distribution pattern of PtdIns(4,5)P Sperm from VSP mice show more Ca influx upon capacitation than VSP mice and abnormal circular motion. VSP-deficient sperm showed enhanced activity of Slo3, a PtdIns(4,5)P-sensitive K channel, which selectively localizes to the principal piece of the flagellum and indirectly enhances Ca influx.
View Article and Find Full Text PDFIn many cancers, high proliferation rates correlate with elevation of rRNA and tRNA levels, and nucleolar hypertrophy. However, the underlying mechanisms linking increased nucleolar transcription and tumorigenesis are only minimally understood. Here we show that IMP dehydrogenase-2 (IMPDH2), the rate-limiting enzyme for de novo guanine nucleotide biosynthesis, is overexpressed in the highly lethal brain cancer glioblastoma.
View Article and Find Full Text PDFThe findings of this study suggest that the phosphoinositide phosphatase Sac3 maintains the protein level of scavenger receptor A (SR-A) and regulates foam cell formation. RAW264.7 macrophages were transfected with short hairpin RNAs that target Sac3.
View Article and Find Full Text PDFThe relative abundance of phosphoinositide (PI) species on the phagosome membrane fluctuates over the course of phagocytosis. PtdIns(3,4,5)P and PtdIns(3,4)P rapidly increase in the forming of the phagocytic cup, following which they disappear after sealing of the cup. In the present study, we monitored the clearance of these PI species using the enhanced green fluorescent protein-fused pleckstrin homology domain of Akt, a fluorescence probe that binds both PtdIns(3,4,5)P and PtdIns(3,4)P in Raw 264.
View Article and Find Full Text PDFPhosphatidylinositol 3-kinase (PI3K)/Akt signaling has been implicated in the anti-inflammatory response in a mouse model of endotoxemia and sepsis. The present study focused on the role of inositol polyphosphate-4-phosphatase type I (Inpp4a), which dephosphorylates PtdIns(3,4)P2 to PtdIns(3)P, in bacterial infections. We prepared myeloid cell-specific Inpp4a-conditional knockout mice.
View Article and Find Full Text PDFPhagocytosis is a highly conserved process whereby phagocytic cells engulf pathogens and apoptotic bodies. The present study focused on the role of inositol polyphosphate-4-phosphatase type I (Inpp4a) in phagocytosis. Raw264.
View Article and Find Full Text PDFPhosphoinositide 5'-phosphatases have been implicated in the regulation of phagocytosis. However, their precise roles in the phagocytic process are poorly understood. We prepared RAW264.
View Article and Find Full Text PDF