A collective Thomson scattering (CTS) diagnostic with a ±3 GHz band around a 77 GHz gyrotron probe beam was developed to measure the velocity distribution of bulk and fast ions in high-temperature plasmas. We propose a new in situ calibration method for a CTS diagnostic system combined with a raytracing code. The method is applied in two situations for electron cyclotron emission in plasmas and in a CTS diagnostic with a modulated probe beam.
View Article and Find Full Text PDFIn this paper, we report the development of off-axis spiral phase mirrors that can be used to generate optical vortices from a range of millimeter waves. An obliquely incident Gaussian beam is reflected from a spiral phase mirror and is converted into an optical vortex beam with a desired topological charge. The mirrors were fabricated by mechanical machining.
View Article and Find Full Text PDFJ Microw Power Electromagn Energy
May 2011
Millimeter-wave components were re-examined for high power (Mega-Watt) and steady-state (greater than one hour) operation. Some millimeter-wave components, including waveguide joints, vacuum pumping sections, power monitors, sliding waveguides, and injection windows, have been improved for high power CW (Continuous Waves) transmission. To improve transmission efficiency, information about the wave phase and mode content of high power millimeter-waves propagating in corrugated waveguides, which are difficult to measure directly, were obtained by a newly developed method based on retrieved phase information.
View Article and Find Full Text PDFHeavy ion beam probe (HIBP) for large helical device (LHD) has been improved to measure the potential fluctuation in high-temperature plasmas. The spatial resolution is improved to about 10 mm by controlling the focus of a probe beam. The HIBP is applied to measure the potential fluctuation in plasmas where the rotational transform is controlled by electron cyclotron current drive.
View Article and Find Full Text PDFA version of the collective backscattering diagnostic using gyrotron radiation for small-scale turbulence is described. The diagnostic is used to measure small-scale (k(s) approximately 34 cm(-1)) plasma density fluctuations in large helical device experiments on the electron cyclotron heating of plasma with the use of 200 kW 82.7 GHz heating gyrotron.
View Article and Find Full Text PDF