Publications by authors named "Shin Jen Lin"

Shrimp acute hepatopancreatic necrosis disease (AHPND) is one of the most devastating diseases to impact the global shrimp farming industry, with a mortality rate of 70 %-100 %. The key virulence factors are a pair of Photorhabdus insect-related (Pir)-like toxins, PirA and PirB. In this study, by using an in vitro transcription and translation assay, we first confirmed that the quorum sensing transcriptional regulator AphB could trigger the expression of its downstream genes after binding to the AphB binding sequence in the promoter region of the pirA/pirB operon.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the immunodominant membrane protein (IMP), which binds to F-actin and plays a significant role in phytoplasma, revealing its X-ray crystallographic structure and interactions with plant actin.
  • Comparative analysis shows IMP shares structural similarities with another F-actin-binding protein, indicating a stable interaction model between IMP and F-actin based on molecular docking studies.
  • The research uncovers a new partnership between IMP and the phytoplasmal effector PHYL1, suggesting their high expression during phytoplasma infection and highlighting potential pathways for improving resistance to phytoplasma-related plant diseases.
View Article and Find Full Text PDF

Photorhabdus insect-related toxins A and B (PirA and PirB) were first recognized as insecticidal toxins from Photorhabdus luminescens. However, subsequent studies showed that their homologs from Vibrio parahaemolyticus also play critical roles in the pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in shrimps. Based on the structural features of the PirA/PirB toxins, it was suggested that they might function in the same way as a Bacillus thuringiensis Cry pore-forming toxin.

View Article and Find Full Text PDF

Acute hepatopancreatic necrosis disease (AHPND) in shrimp is caused by strains that harbor a pVA1-like plasmid containing the and genes. It is also known that the production of the PirA and PirB proteins, which are the key factors that drive the observed symptoms of AHPND, can be influenced by environmental conditions and that this leads to changes in the virulence of the bacteria. However, to our knowledge, the mechanisms involved in regulating the expression of the / genes have not previously been investigated.

View Article and Find Full Text PDF

Acute hepatopancreatic necrosis disease (AHPND) is a lethal shrimp disease. The pathogenic agent of this disease is a special strain that contains a pVA1 plasmid. The protein products of two toxin genes in pVA1, , targeted the shrimp's hepatopancreatic cells and were identified as the major virulence factors.

View Article and Find Full Text PDF

Uracil-DNA glycosylases (UDGs) are conserved DNA-repair enzymes that can be found in many species, including herpesviruses. Since they play crucial roles for efficient viral DNA replication in herpesviruses, they have been considered as potential antiviral targets. In our previous work, Staphylococcus aureus SAUGI was identified as a DNA mimic protein that targets UDGs from S.

View Article and Find Full Text PDF

Viral glycoproteins are expressed by many viruses, and during infection they usually play very important roles, such as receptor attachment or membrane fusion. The mature virion of the white spot syndrome virus (WSSV) is unusual in that it contains no glycosylated proteins, and there are currently no reports of any glycosylation mechanisms in the pathogenesis of this virus. In this study, we cloned a glycosylase, mannosyl-glycoprotein endo-β-N-acetylglucosaminidase (ENGase, EC 3.

View Article and Find Full Text PDF

Phytoplasmas are bacterial plant pathogens which can induce severe symptoms including dwarfism, phyllody and virescence in an infected plant. Because phytoplasmas infect many important crops such as peanut and papaya they have caused serious agricultural losses. The phytoplasmal effector causing phyllody 1 (PHYL1) is an important phytoplasmal pathogenic factor which affects the biological function of MADS transcription factors by interacting with their K (keratin-like) domain, thus resulting in abnormal plant developments such as phyllody.

View Article and Find Full Text PDF
Article Synopsis
  • Acute hepatopancreatic necrosis disease (AHPND) in penaeid shrimp leads to high mortality rates and significant economic losses, triggered by specific strains of bacteria that express harmful toxins.
  • These toxins, PirA and PirB, form a complex that damages shrimp cells, but their binding mechanism is not fully understood.
  • The study utilized various techniques like isothermal titration calorimetry and mass spectrometry to explore the interaction between PirA and PirB, resulting in a proposed model that could aid in developing strategies to combat AHPND.
View Article and Find Full Text PDF

DNA mimicry is a direct and effective strategy by which the mimic competes with DNA for the DNA binding sites on other proteins. Until now, only about a dozen proteins have been shown to function via this strategy, including the DNA mimic protein DMP19 from Neisseria meningitides. We have shown previously that DMP19 dimer prevents the operator DNA from binding to the transcription factor NHTF.

View Article and Find Full Text PDF

In aquaculture, shrimp farming is a popular field. The benefits of shrimp farming include a relatively short grow-out time, high sale price, and good cost recovery. However, outbreaks of serious diseases inflict serious losses, and acute hepatopancreatic necrosis disease (AHPND) is an emerging challenge to this industry.

View Article and Find Full Text PDF

Testicular nuclear receptors 2 and 4 (TR2, TR4), also known as NR2C1 and NR2C2, belong to the nuclear receptor superfamily and were first cloned in 1989 and 1994, respectively. Although classified as orphan receptors, several natural molecules, their metabolites, and synthetic compounds including polyunsaturated fatty acids (PUFAs), PUFA metabolites 13-hydroxyoctadecadienoic acid, 15-hydroxyeicosatetraenoic acid, and the antidiabetic drug thiazolidinediones can transactivate TR4. Importantly, many of these ligands/activators can also transactivate peroxisome proliferator-activated receptor gamma (PPARγ), also known as NR1C3 nuclear receptor.

View Article and Find Full Text PDF

Despite the success of androgen-deprivation therapy (ADT) with the newly developed anti-androgen enzalutamide (Enz, also known as MDV3100) to suppress castration resistant prostate cancer (CRPC) in extending patient survival by an extra 4.8 months, eventually patients die with the development of Enz resistance that may involve the induction of the androgen receptor (AR) splicing variant ARv7. Here we identify an unrecognized role of Natural Killer (NK) cells in the prostate tumor microenvironment that can be better recruited to the CRPC cells to suppress ARv7 expression resulting in suppressing the Enz resistant CRPC cell growth and invasion.

View Article and Find Full Text PDF

Prostatitis is a common disease contributing to 8% of all urologist visits. Yet the etiology and effective treatment remain to be further elucidated. Using a non-obese diabetes mouse model that can be induced by autoimmune response for the spontaneous development of prostatitis, we found that injection of the ASC-J9® at 75 mg/Kg body weight/48 hours led to significantly suppressed prostatitis that was accompanied with reduction of lymphocyte infiltration with reduced CD4+ T cells in prostate.

View Article and Find Full Text PDF
Article Synopsis
  • Acute hepatopancreatic necrosis disease (AHPND) is a serious disease affecting penaeid shrimp, primarily caused by the bacterium Vibrio parahaemolyticus, leading to significant losses in shrimp farming.
  • Researchers discovered that a specific plasmid (pVA1) in the bacteria is crucial for its disease-causing ability, particularly the presence of genes for toxins known as PirA and PirB.
  • The study also revealed that the structure of these toxins is similar to other insecticidal proteins, suggesting that they may function similarly by creating pores in cell membranes, and that the genes for these toxins can be transferred between bacteria.
View Article and Find Full Text PDF

Nuclear receptors are important to maintain the tissue homeostasis. Each receptor is tightly controlled and under a very complicated balance. In this review, we summarize the current findings regarding the nuclear receptor TR4 and its role in prostate cancer (PCa) progression.

View Article and Find Full Text PDF

The insulin sensitizers, thiazolidinediones (TZDs), have been used as anti-diabetic drugs since the discovery of their ability to alter insulin resistance through transactivation of peroxisome proliferator-activated receptors (PPARs). However, their side effects in hepatitis, cardiovascular diseases, and bladder cancer resulted in some selling restrictions in the USA and Europe. Here, we found that the potential impact of TZDs on the prostate cancer (PCa) progression might be linked to the TR4 nuclear receptor expression.

View Article and Find Full Text PDF

A recent report indicated that the TR4 nuclear receptor might suppress the prostate cancer (PCa) initiation via modulating the DNA damage/repair system. Knocking-out peroxisome proliferator-activated receptor gamma (PPARG), a nuclear receptor that shares similar ligands/activators with TR4, promoted PCa initiation. Here we found 9% of PCa patients have one allele of PPARG deletion.

View Article and Find Full Text PDF

Unlabelled: Iron is an essential nutrient for nearly all living organisms, including both hosts and invaders. Proteins such as ferritin regulate the iron levels in a cell, and in the event of a pathogenic invasion, the host can use an iron-withholding mechanism to restrict the availability of this essential nutrient to the invading pathogens. However, pathogens use various strategies to overcome this host defense.

View Article and Find Full Text PDF
Article Synopsis
  • Testicular nuclear receptor 4 (TR4) is protective against oxidative stress and DNA damage, and its expression is linked to more aggressive prostate cancer (PCa) characterized by higher Gleason scores.
  • Studies showed that increased TR4 levels in PCa cells enhance their migration and invasion capabilities through the CCL2/CCR2 signaling pathway.
  • Research in mice confirmed that TR4 boosts PCa metastasis and that blocking CCR2 can hinder this process, indicating TR4 might be a valuable biomarker and target for new therapies against PCa metastasis.
View Article and Find Full Text PDF

Testicular nuclear receptor 4 (TR4), also known as NR2C2, belongs to the nuclear receptor superfamily and shares high homology with the testicular nuclear receptor 2. The natural ligands of TR4 remained unclear until the recent discoveries of several energy/lipid sensors including the polyunsaturated fatty acid metabolites, 13-hydroxyoctadecadienoic acid and 15-hydroxyeicosatetraenoic acid, and their synthetic ligands, thiazolidinediones, used for treatment of diabetes. TR4 is widely expressed throughout the body and particularly concentrated in the testis, prostate, cerebellum, and hippocampus.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor γ (PPARγ, NR1C3) and testicular receptor 4 nuclear receptor (TR4, NR2C2) are two members of the nuclear receptor (NR) superfamily that can be activated by several similar ligands/activators including polyunsaturated fatty acid metabolites, such as 13-hydroxyoctadecadienoic acid and 15-hydroxyeicosatetraenoic acid, as well as some anti-diabetic drugs such as thiazolidinediones (TZDs). However, the consequences of the transactivation of these ligands/activators via these two NRs are different, with at least three distinct phenotypes. First, activation of PPARγ increases insulin sensitivity yet activation of TR4 decreases insulin sensitivity.

View Article and Find Full Text PDF

Testicular nuclear receptor 4 (TR4), a member of the nuclear receptor superfamily, plays important roles in metabolism, fertility and aging. The linkage of TR4 functions in cancer progression, however, remains unclear. Using three different mouse models, we found TR4 could prevent or delay prostate cancer (PCa)/prostatic intraepithelial neoplasia development.

View Article and Find Full Text PDF

Prostate cancer (PCa) stem/progenitor cells are known to have higher chemoresistance than non-stem/progenitor cells, but the underlying molecular mechanism remains unclear. We found the expression of testicular nuclear receptor 4 (TR4) is significantly higher in PCa CD133(+) stem/progenitor cells compared with CD133(-) non-stem/progenitor cells. Knockdown of TR4 levels in the established PCa stem/progenitor cells and the CD133(+) population of the C4-2 PCa cell line with lentiviral TR4 siRNA led to increased drug sensitivity to the two commonly used chemotherapeutic drugs, docetaxel and etoposide, judging from significantly reduced IC50 values and increased apoptosis in the TR4 knockdown cells.

View Article and Find Full Text PDF

Objective: To investigate the role of peroxisome proliferator-activated receptor γ (PPARγ) in bladder cancer (BCa) progression.

Materials And Methods: The gene copy number of PPARγ in human BCa tissue samples was analyzed by fluorescence in situ hybridization. The migration and invasive ability of human BCa cell lines with different PPARγ expression levels or treated with thiazolidinedione-rosiglitazone, a PPARγ agonist and an antidiabetic drug, were investigated.

View Article and Find Full Text PDF