Publications by authors named "Shin Gene Kang"

GA and ABA play antagonistic roles in numerous cellular processes essential for growth, development, and stress responses. GASA4 and GASA6 belong to a family of GA-Stimulated transcripts in Arabidopsis, known as GA-inducible and ABA-repressible. We have found that GASA4 and GASA6 expression is likely mediated through a repressor of GA responses, GA INSENSITIVE (GAI) protein.

View Article and Find Full Text PDF

The Arabidopsis thaliana tandem zinc finger 1 (AtTZF1) protein is characterized by two tandem-arrayed CCCH-type zinc fingers. We have previously found that AtTZF1 affects hormone-mediated growth, stress and gene expression responses. While much has been learned at the genetic and physiological level, the molecular mechanisms underlying the effects of AtTZF1 on gene expression remain obscure.

View Article and Find Full Text PDF

Tandem zinc finger (TZF) proteins are characterized by two zinc-binding CCCH motifs arranged in tandem. Human TZFs such as tristetraproline (TTP) bind to and trigger the degradation of mRNAs encoding cytokines and various regulators. Although the molecular functions of plant TZFs are unknown, recent genetic studies have revealed roles in hormone-mediated growth and environmental responses, as well as in the regulation of gene expression.

View Article and Find Full Text PDF

Sugar signaling is a mechanism that plants use to integrate various internal and external cues to achieve nutrient homeostasis, mediate developmental programs, and articulate stress responses. Many bZIP transcription factors are known to be involved in nutrient and/or stress signaling. An Arabidopsis S1-group bZIP gene, AtbZIP1, was identified as a sugar-sensitive gene in a previous gene expression profiling study (Plant Cell.

View Article and Find Full Text PDF

Processing bodies (PBs) are specialized cytoplasmic foci where mRNA turnover and translational repression can take place. Stress granules are related cytoplasmic foci. The CCCH tandem zinc finger proteins (TZFs) play pivotal roles in gene expression, cell fate specification, and various developmental processes.

View Article and Find Full Text PDF

Glucose (Glc) signaling, along with abscisic acid (ABA) signaling, has been implicated in regulating early plant development in Arabidopsis. It is generally believed that high levels of exogenous Glc cause ABA accumulation, which results in a delay of germination and an inhibition of seedling development-a typical stress response. To test this hypothesis and decipher the complex interactions that occur in the signaling pathways, we determined the effects of sugar and ABA on one developmental event, germination.

View Article and Find Full Text PDF

Sterols are important not only for structural components of eukaryotic cell membranes but also for biosynthetic precursors of steroid hormones. In plants, the diverse functions of sterol-derived brassinosteroids (BRs) in growth and development have been investigated rigorously, yet little is known about the regulatory roles of other phytosterols. Recent analysis of Arabidopsis fackel (fk) mutants and cloning of the FK gene that encodes a sterol C-14 reductase have indicated that sterols play a crucial role in plant cell division, embryogenesis, and development.

View Article and Find Full Text PDF