J Pharmacol Toxicol Methods
December 2016
Angiotensin II (AngII) and kinins (bradykinin (BK) and des-Arg9-bradykinin (DBK)), are potent agents involved in the maintenance of blood pressure and several biological activities, and their better understanding is important to produce new drugs aimed to control arterial blood pressure. Previous studies on ligand-receptor binding have been based on radioactive methods, which led us to study a new method based on the fluorimetric method. A lanthanide attached to the N-terminal segment of the peptide (AngII, BK and DBK), which produces a time-resolved-fluorescent ligand, was used in a binding test with CHO cells expressing the AT1, AT2, B1 or B2 receptors in comparison with the same cell line tested with the radioactive ligand.
View Article and Find Full Text PDFBradykinin (BK) is a nonapeptide important for several physiological processes such as vasodilatation, increase in vascular permeability and release of inflammatory mediators. BK performs its actions by coupling to and activating the B2 receptor, a family A G-protein coupled receptor. Using a strategy which allows systematical monitoring of BK R1 and R9 residues and B2 receptor acidic residues Glu5.
View Article and Find Full Text PDFMutant forms of kinin B(1) receptor (B(1)R) and analogs of the full agonist des-Arg(9)-bradykinin (DABK) were investigated aiming to verify the importance of selected receptor residues and of each agonist-peptide residue in the specific binding and activation. Linked by a specific disulfide bond (Cys(100)-Cys(650)), the N-terminal (N(t)) and the EC3 loop C-terminal (C(t)) segments of angiotensin II (AngII) receptor 1 (AT(1)R) have been identified to form an extracellular site for binding the agonist N(t) segment (Asp(1) and Arg(2) residues). Asp(712) residue at the receptor EC3 loop binds the peptide Arg(2) residue.
View Article and Find Full Text PDFBradykinin (BK) and des-Arg(9)-bradykinin (DBK) of kallikrein-kinin system exert its effects mediated by the B2 (B2R) and B1 (B1R) receptors, respectively. It was already shown that the deletion of kinin B1R or of B2R induces upregulation of the remaining receptor subtype. However studies on overexpression of B1R or B2R in transgenic animals have supported the importance of the overexpressed receptor but the expression of another receptor subtype has not been determined.
View Article and Find Full Text PDFExtracellular peptide ligand binding sites, which bind the N-termini of angiotensin II (AngII) and bradykinin (BK) peptides, are located on the N-terminal and extracellular loop 3 regions of the AT(1)R and BKRB(1) or BKRB(2) G-protein-coupled receptors (GPCRs). Here we synthesized peptides P15 and P13 corresponding to these receptor fragments and showed that only constructs in which these peptides were linked by S-S bond, and cyclized by closing the gap between them, could bind agonists. The formation of construct-agonist complexes was revealed by electron paramagnetic resonance spectra and fluorescence measurements of spin labeled biologically active analogs of AngII and BK (Toac(1)-AngII and Toac(0)-BK), where Toac is the amino acid-type paramagnetic and fluorescence quencher 2, 2, 6, 6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid.
View Article and Find Full Text PDFAngiotensin (Ang) I-converting enzyme (ACE) is involved in the control of blood pressure by catalyzing the conversion of Ang I into the vasoconstrictor Ang II and degrading the vasodilator peptide bradykinin. Human ACE also functions as a signal transduction molecule, and the binding of ACE substrates or its inhibitors initiates a series of events. In this study, we examined whether Ang II could bind to ACE generating calcium signaling.
View Article and Find Full Text PDFPrevious research showed that disruption of the Cys(18)-Cys(274) bond in the angiotensin II (AngII) AT₁ receptor mutant (C18S), expressed in CHO cells, causes an increase in the basal activity and attenuation of the maximum response to AngII. In addition, this mutant was mostly intracellularly distributed. Our aim was to investigate whether the intracellular presence of the mutant was due to a constitutive internalization or to a defective maturation of the receptor.
View Article and Find Full Text PDFIntroduction: Angiotensin II (AII) is the main active product of the renin angiotensin system. Better known effects of AII are via AT1 receptor (AT1R). Expression of AT1R mutants (L265D and L262D) in CHO cells increased cAMP formation when compared to CHO cells expressing the wild type (WT) AT1R.
View Article and Find Full Text PDFBinding of angiotensin II (DRVYIHPF, AngII) to its AT(1) receptor can trigger a process known as tachyphylaxis (loss of receptor response owing to repeated agonist stimulation). We propose a two-state binding model for tachyphylaxis where the N-terminal Asp(1) and Arg(2) residues of the peptide are supposed to initially bind to the N-terminal segment (Arg(23)) and to the EC-3 loop (Asp(281)) of an AT(1) molecule, respectively (state 1). Sequentially, a disruption of the salt bond between the AngII Asp(1) beta-carboxyl function and the receptor Arg(23) can occur with release of the peptide N-terminal segment, favoring the binding of the Arg(2) residue to the EC-3 loop (Asp(178,281), state 2).
View Article and Find Full Text PDFPrevious studies on angiotensin II (AngII) AT(1) receptor function have revealed that the N-terminal residues of AngII may modulate receptor activation by binding at the receptor extracellular site. A remarkable feature of this site is an insertion of 8 amino acids in the middle of the EC-3 loop including the Cys(274) residue that supposedly makes a disulfide bond with N-terminal Cys(18). As demonstrated by assays with Del(267-275)AT(1), the role of the Cys(18)-Cys(274) disulfide bridge is to keep a conformation of the inserted residues that allows a normal binding of the AngII N-terminal residues.
View Article and Find Full Text PDFBradykinin (BK) is a vasorelaxant, algesic and inflammatory agent. Angiotensin II (AngII) is known to control vascular tone and promote growth, inflammation and artherogenesis. There is evidence for cross talking between BK and AngII receptors.
View Article and Find Full Text PDFRelaxing action of sodium nitroprusside (SNP) was significantly reduced in the stomach fundus of mice lacking the kinin B(1) receptor (B(1)(-/-)). Increased basal cGMP accumulation was correlated with attenuated SNP induced dose-dependent relaxation in B(1)(-/-) when compared with wild type (WT) control mice. These responses to SNP were completely blocked by the guanylate cyclase inhibitor ODQ (10 microM).
View Article and Find Full Text PDFObjective: Kinins mediate pathophysiological processes related to hypertension, pain, and inflammation through the activation of two G-protein-coupled receptors, named B(1) and B(2). Although these peptides have been related to glucose homeostasis, their effects on energy balance are still unknown.
Research Design And Methods: Using genetic and pharmacological strategies to abrogate the kinin B(1) receptor in different animal models of obesity, here we present evidence of a novel role for kinins in the regulation of satiety and adiposity.
This study characterized pharmacologically the functional responses to agonists angiotensin II (AngII) and bradykinin (BK) derivatives containing the TOAC (2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid) spin label at the N-terminal (TOAC1-AngII and TOAC0-BK) and internal (TOAC3-AngII and TOAC3-BK) positions of these vasoactive peptides. Affinity constants of the ligands for AT1 and B2 receptors were evaluated in vitro by binding assays and biological effects by extracellular acidification rates and in vivo by blood pressure responses. In contrast to internally labeled analogues (TOAC3-AngII or TOAC3-BK), the TOAC1-AngII and TOAC0-BK derivatives dose-dependently increased the extracellular acidification rate in adherent cultured Chinese hamster ovary (CHO) cells expressing AT1 or B2 receptors, respectively.
View Article and Find Full Text PDFWe described in mouse inner medullary-collecting duct cells (mIMCD-3) the somatic and the N-domain ACE synthesis and its interaction with the kallikrein-kinin system co-localized in the same cells. We purified two ACE forms from culture medium, M1 (130 kDa) and M2 (N-domain, 60 kDa), and cellular lysate, C1 (130 kDa) and C2 (N-domain, 60 kDa). Captopril and enalaprilat inhibited the purified enzymes.
View Article and Find Full Text PDFBraz J Med Biol Res
May 2007
Previous studies have shown that the vascular reactivity of the mouse aorta differs substantially from that of the rat aorta in response to several agonists such as angiotensin II, endothelin-1 and isoproterenol. However, no information is available about the agonists bradykinin (BK) and DesArg(9)BK (DBK). Our aim was to determine the potential expression of kinin B(1) and B(2) receptors in the abdominal mouse aorta isolated from C57BL/6 mice.
View Article and Find Full Text PDFThe most prevalent physiological effects of ANG II, the main product of the renin-angiotensin system, are mediated by the AT1 receptor, a rhodopsin-like AGPCR. Numerous studies of the cardiovascular effects of synthetic peptide analogs allowed a detailed mapping of ANG II's structural requirements for receptor binding and activation, which were complemented by site-directed mutagenesis studies on the AT1 receptor to investigate the role of its structure in ligand binding, signal transduction, phosphorylation, binding to arrestins, internalization, desensitization, tachyphylaxis, and other properties. The knowledge of the high-resolution structure of rhodopsin allowed homology modeling of the AT1 receptor.
View Article and Find Full Text PDFEarlier studies with Mas protooncogene, a member of the G-protein-coupled receptor family, have proposed this gene to code for a functional AngII receptor, however further results did not confirm this assumption. In this work we investigated the hypothesis that a heterodimeration AT(1)/Mas could result in a functional interaction between both receptors. For this purpose, CHO or COS-7 cells were transfected with the wild-type AT(1) receptor, a non-functional AT(1) receptor double mutant (C18F-K20A) and Mas or with WT/Mas and C18F-K20A/Mas.
View Article and Find Full Text PDFA transgenic mouse model, deficient in kinin B(1) receptor (B(1)(-/-)) was used to evaluate the role of B(2) receptor in the smooth muscle stomach fundus. The results showed that the potency of bradykinin (BK) to induce contraction in the gastric tissue was maintained whereas the efficacy was markedly reduced. The angiotensin converting enzyme (ACE) inhibitor captopril potentiated BK-induced effect in wild type (WT) but not in B(1)(-/-) fundus.
View Article and Find Full Text PDFAn insertion of residues in the third extracellular loop and a disulfide bond linking this loop to the N-terminal domain were identified in a structural model of a G-protein coupled receptor specific to angiotensin II (AT1 receptor), built in homology to the seven-transmembrane-helix bundle of rhodopsin. Both the insertion and the disulfide bond were located close to an extracellular locus, flanked by the second extracellular loop (EC-2), the third extracellular loop (EC-3) and the N-terminal domain of the receptor; they contained residues identified by mutagenesis studies to bind the angiotensin II N-terminal segment (residues D1 and R2). It was postulated that the insertion and the disulfide bond, also found in other receptors such as those for bradykinin, endothelin, purine and other ligands, might play a role in regulating the function of the AT1 receptor.
View Article and Find Full Text PDFTo assess the importance of the leucine residues in positions 262 and 265 of the angiotensin AT(1) receptor for signaling pathways and receptor expression and regulation, we compared the properties of CHO cells transfected with the wild type or the L262D or L265D receptor point mutants. It was found that the two mutants significantly increased the basal intracellular cyclic AMP (cAMP) formation in an agonist-independent mode. The morphology transformation of CHO cells was correlated with the increased cAMP formation, since forskolin, a direct activator of adenylate cyclase mimicked this effect on WT-expressing CHO cells.
View Article and Find Full Text PDFTachyphylaxis, defined as the acute loss of response of some smooth muscles upon repeated stimulations with angiotensin II (Ang II), has been shown to be dependent mainly on the N-terminal region of the ligand. To further study the structural requirements for the induction of tachyphylaxis we have synthesized Ang II analogs containing the bulky and very lipophilic substituents 9-fluorenylmethyloxycarbonyl (Fmoc) and 9-fluorenylmethyl ester (OFm) at the alpha-amino (Nalpha-Fmoc-Ang II) or the beta-carboxyl ([Asp(OFm)1]-Ang II) groups of the Asp1 residue, respectively. In binding assays with Chinese hamster ovary cells transfected with the AT1 Ang II receptor, Nalpha-Fmoc-Ang II bound with high affinity, whereas [Asp(OFm)1]-Ang II showed lower affinity.
View Article and Find Full Text PDFWe have previously demonstrated that Chinese hamster ovary (CHO) cells transfected with the angiotensin II AT1 receptor gene containing only the coding region, presented tachyphylaxis to the total inositol phosphate (InsPs) and Ca2+ responses mediated by angiotensin II and [2-lysine]angiotensin II ([Lys2]angiotensin II). Now we have evaluated the possible role of the 3'-untranslated region of the angiotensin AT1 receptor mRNA in modulating the angiotensin AT1 receptor-mediated cellular responses. The binding parameters, as well as the Ca2+ and InsPs responses induced by angiotensin II and [Lys2]angiotensin II were similar in cells transfected with the angiotensin AT1 receptor with or without the 3'-untranslated region sequence.
View Article and Find Full Text PDFThe finding of critical residues for angiotensin II (AII) binding and receptor signalling in helices V and VI led us to assess if, in this region of the receptor, aliphatic side chains might play a role in the agonist-mediated mechanism. Two mutations of the angiotensin AT1 receptor were designed to explore a possible role of a leucine at two positions, Leu265 and Leu268. Thus two mutants, L265D and L268D, were prepared through single substitutions of Leu265, located in the C-terminal region of transmembrane VI (TM-VI), and Leu268, in the adjoining region of the third extracellular loop (EC-3), for an aspartyl residue, and were stably transfected into Chinese hamster ovary (CHO) cells.
View Article and Find Full Text PDFAngiotensin II (AII) AT(1) receptor mutants with replacements of aliphatic amino acids in the distal region of helix VI and the adjoining region of the third extracellular loop (EC-3) were expressed in Chinese hamster ovary (CHO) cells to determine their role in ligand binding and activation. The triple mutant [L262D, L265D, L268D]AT(1) (L3D) showed a marked reduction in affinity for AII and for non-peptide (losartan) and peptide ([Sar(1)Leu(8) ]AII) antagonists; in functional assays using inositol phosphate (IP) accumulation, the relative potency and the maximum effect of AII were reduced in L3D. Replacement of Leu(268) (in EC-3) and Leu(262) (in the transmembrane domain) by aspartyl residues did not cause significant changes in the receptor's affinity for the ligands and in IP production.
View Article and Find Full Text PDF