Arm positions employed during magnetic resonance imaging (MRI) can affect magnetic field distribution, which may result in variability in proton density fat fraction (PDFF) measurements. This study evaluated the effect of arm position on lumbar PDFF measured using chemical-shift-encoded MRI (CSE-MRI). Fifteen healthy volunteers from a single-center underwent lumbar CSE-MRI at two different arm positions (side and elevated) using a single 3T scanner.
View Article and Find Full Text PDFKiwifruit has been proposed as a phantom for prostate magnetic resonance imaging (MRI) to adjust multiparametric MRI factors. This study evaluated the variability in contrasts and apparent diffusion coefficients (ADCs) via repeated scans of kiwifruits for 1 week. All scans were performed using a 3T MRI system.
View Article and Find Full Text PDFThis phantom study assessed the effect of Gd-EOB-DTPA on T1 bias (difference in T1 between water and fat) of the proton density fat fraction when using magnetic resonance spectroscopy. Phantoms containing varying fat percentages, without and with Gd-EOB-DTPA (precontrast and postcontrast, respectively), were scanned with repetition times ranging from 1000 to 5000 ms. The relationship between the proton density fat fraction at a reference repetition time of 5000 ms and that using different repetition times, was evaluated in the precontrast and postcontrast phantoms using linear regression and Bland-Altman analyses.
View Article and Find Full Text PDFA diameter of glass bottles in phantoms in the above article (2 cm) was incorrect. The correct diameter is 4.5 cm.
View Article and Find Full Text PDFThe purpose of this study was to evaluate whether disodium gadoxetate (Gd-EOB-DTPA) affects proton density fat fractions (PDFFs) during use of the multiecho Dixon (meDixon) method in phantom and simulation magnetic resonance imaging (MRI) studies at 3 T. Fat-water phantoms comprising vegetable fat-water emulsions with varying fat volume percentages (0, 5, 10, 15, 20, 30, 40, and 50) and Gd-EOB-DTPA concentrations (0 and 0.4 mM) were prepared.
View Article and Find Full Text PDF