Agrobacterium-mediated genetic transformation not only represents a technology of choice to genetically manipulate plants, but it also serves as a model system to study mechanisms employed by invading pathogens to counter the myriad defenses mounted against them by the host cell. Here, we uncover a new layer of plant defenses that is targeted by A. tumefaciens to facilitate infection.
View Article and Find Full Text PDFAgrobacterium is a natural genetic engineer of plants that exports several virulence proteins into host cells in order to take advantage of the cell machinery to facilitate transformation and support bacterial growth. One of these effectors is the F-box protein VirF, which presumably uses the host ubiquitin/proteasome system (UPS) to uncoat the packaging proteins from the invading bacterial T-DNA. By analogy to several other bacterial effectors, VirF most likely has several functions in the host cell and, therefore, several interacting partners among host proteins.
View Article and Find Full Text PDFThe interaction of legumes with N2-fixing bacteria collectively called rhizobia results in root nodule development. The number of nodules formed is tightly restricted through the systemic negative feedback control by the host called autoregulation of nodulation (AON). Here, we report the characterization and gene identification of TOO MUCH LOVE (TML), a root factor that acts during AON in a model legume Lotus japonicus.
View Article and Find Full Text PDFTransient gene expression is a useful approach for studying the functions of gene products. In the case of plants, Agrobacterium infiltration is a method of choice for transient introduction of genes for many species. However, this technique does not work efficiently in some species, such as Arabidopsis thaliana.
View Article and Find Full Text PDFMany plant bacteriologists, if not all, feel that their particular microbe should appear in any list of the most important bacterial plant pathogens. However, to our knowledge, no such list exists. The aim of this review was to survey all bacterial pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate the bacterial pathogens they would place in a 'Top 10' based on scientific/economic importance.
View Article and Find Full Text PDFThe SCF (Skp1-Cul1-F-box protein) ubiquitin ligase complex plays a pivotal role in various biological processes, including host-pathogen interactions. Many pathogens exploit the host SCF machinery to promote efficient infection by translocating pathogen-encoded F-box proteins into the host cell. How pathogens ensure sufficient amounts of the F-box effectors in the host cell despite the intrinsically unstable nature of F-box proteins, however, remains unclear.
View Article and Find Full Text PDFTo genetically transform plants, Agrobacterium transfers its T-DNA into the host cell and integrates it into the plant genome, resulting in neoplastic growths. Over the past 2 decades, a great deal has been learned about the molecular mechanism by which Agrobacterium produces T-DNA and transports it into the host nucleus. However, T-DNA integration, which is the limiting, hence, the most critical step of the transformation process, largely remains an enigma.
View Article and Find Full Text PDFFront Plant Sci
August 2012
The SCF (SKP1-CUL1-F-box protein) ubiquitin ligase complex mediates polyubiquitination of proteins targeted for degradation, thereby controlling a plethora of biological processes in eukaryotic cells. Although this ubiquitination machinery is found and functional only in eukaryotes, many non-eukaryotic pathogens also encode F-box proteins, the critical subunits of the SCF complex. Increasing evidence indicates that such non-eukaryotic F-box proteins play an essential role in subverting or exploiting the host ubiquitin/proteasome system for efficient pathogen infection.
View Article and Find Full Text PDFLegume plants tightly control the number and development of root nodules. This is partly regulated by a long-distance signaling known as auto-regulation of nodulation (AON). AON signaling involves at least two potential long-distance signals: root-derived signal and shoot-derived signal.
View Article and Find Full Text PDFLegume plants develop root nodules to recruit nitrogen-fixing bacteria called rhizobia. This symbiotic relationship allows the host plants to grow even under nitrogen limiting environment. Since nodule development is an energetically expensive process, the number of nodules should be tightly controlled by the host plants.
View Article and Find Full Text PDFLegume plants tightly control the development and number of symbiotic root nodules. In Lotus japonicus, this regulation requires HAR1 (a CLAVATA1-like receptor kinase) in the shoots, suggesting that a long-distance communication between the shoots and the roots may exist. To better understand its molecular basis, we isolated and characterized a novel hypernodulating mutant of L.
View Article and Find Full Text PDF