Oriented zinc (Zn) electrodeposition is critical for the long-term performance of aqueous Zn metal batteries. However, the intricate interfacial reactions between the Zn anode and electrolytes hinder a comprehensive understanding of Zn metal deposition. Here, the reaction pathways of Zn deposition and report the preferential formation of Zn single-crystalline nuclei followed by dense Zn(002) deposition is elucidated, which is induced by a gradient solid-electrolyte interphase (SEI).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2024
Rational structural designs of solid polymer electrolytes featuring rich interface-phase morphologies can improve electrolyte connection and rapid ion transport. However, these rigid interfacial structures commonly result in diminished or entirely inert ionic conductivity within their bulk phase, compromising overall electrolyte performance. Herein, a multi-component ion-conductive electrolyte was successfully designed based on a refined multi-structural polymer electrolyte (RMSPE) framework with uniform Li solvation chemistry and rapid Li transporting kinetics.
View Article and Find Full Text PDFMoSe has attracted significant interest for Na storage due to its large interlayer distance, favorable band gap structure, and satisfying theoretical specific capacity. Nevertheless, the poor conductivity and large volume stress/strain always lead to poor cycle stability and limited rate capability. Herein, the P-Se bond and phase engineering strategies are proposed to enhance the stability of MoSe with the assistance of carbon compositing.
View Article and Find Full Text PDFHigh tap density electrodes play a vital role in developing rechargeable batteries with high volumetric capacities, however, developing advanced electrodes with satisfied capacity, excellent structural stability, and achieving the resulted batteries with a high initial Coulombic efficiency (ICE) and good rate capability with long lifespan simultaneously, are still an intractable challenge. Herein, an ultrahigh ICE of 94.1% and stable cycling of carbon-free iron selenides anode is enabled with a high tap density of 2.
View Article and Find Full Text PDFNumerous organic electrolytes additives have been reported to improve Zn anode performance in aqueous Zn metal batteries (AZMBs). However, the modification mechanism needs to be further revealed in consideration of different environments for electrolytes and electrodes during the charge-discharge process. Herein, sulfur-containing zwitter-molecule (methionine, Met) is used as an additive for ZnSO electrolytes.
View Article and Find Full Text PDFWith the continuously growing demand for wide-range applications, lithium-ion batteries (LIBs) are increasingly required to work under conditions that deviate from room temperature (RT). However, commercial electrolytes exhibit low thermal stability at high temperatures (HT) and poor dynamic properties at low temperatures (LT), hindering the operation of LIBs under extreme conditions. The bottleneck restricting the practical applications of LIBs has promoted researchers to pay more attention to developing a series of innovative electrolytes.
View Article and Find Full Text PDFThe development of high-energy-density solid-state lithium metal battery has been hindered by the unstable cycling of Ni-rich cathodes at high rate and limited wide-temperatures adoptability. In this study, an ionic liquid functionalized quasi-solid-state electrolyte (FQSE) is prepared to address these challenges. The FQSE features a semi-immobilized ionic liquid capable of anchoring solvent molecules through electrostatic interactions, which facilitates Li desolvation and reduces deleterious solvent-cathode reactions.
View Article and Find Full Text PDFAqueous zinc ion batteries (AZIBs) are regarded as one of the most promising large-scale energy storage systems because of their considerable energy density and intrinsic safety. Nonetheless, the severe dendrite growth of the Zn anode, the serious degradation of the cathode, and the boundedness of separators restrict the application of AZIBs. Fortunately, electrospinning nanofibers demonstrate huge potential and bright prospects in constructing AZIBs with excellent electrochemical performance due to their controllable nanostructure, high conductivity, and large specific surface area (SSA).
View Article and Find Full Text PDFConstructing an inorganic-rich and robust solid electrolyte interphase (SEI) is one of the crucial approaches to improving the electrochemical performance of sodium metal batteries (SMBs). However, the low conductivity and distribution of common inorganics in SEI disturb Na diffusion and induce nonuniform sodium deposition. Here, we construct a unique SEI with evenly scattered high-conductivity inorganics by introducing a self-sacrifice LiTFSI into the sodium salt-base carbonate electrolyte.
View Article and Find Full Text PDFAs a high energy density power system, lithium-carbon dioxide (Li-CO ) batteries play an important role in addressing the fossil fuel crisis issues and alleviating the greenhouse effect. However, the sluggish transformation kinetic of CO and the difficult decomposition of discharge products impede the achievement of large capacity, small overpotential, and long life span of the batteries, which require exploring efficient catalysts to resolve these problems. In this review, the main focus is on the hot spot regulation strategies of the catalysts, which include the modulation of the active sites, the designing of microstructure, and the construction of composition.
View Article and Find Full Text PDFAchieving stable cycling of high-voltage solid-state lithium metal batteries is crucial for next-generation rechargeable batteries with high energy density and high safety. However, the complicated interface problems in both cathode/anode electrodes preclude their practical applications hitherto. Herein, to simultaneously solve such interfacial limitations and obtain sufficient Li conductivity in the electrolyte, an ultrathin and adjustable interface is developed at the cathode side through a convenient surface in situ polymerization (SIP), achieving a durable high-voltage tolerance and Li-dendrite inhibition.
View Article and Find Full Text PDFRechargeable aqueous zinc-ion batteries are of great potential as one of the next-generation energy-storage devices due to their low cost and high safety. However, the development of long-term stable electrodes and electrolytes still suffers from great challenges. Herein, a self-separation strategy is developed for an interface layer design to optimize both electrodes and electrolytes simultaneously.
View Article and Find Full Text PDFBackground: Complete discoid medial meniscus is an extremely rare abnormality of the knee joint whose meniscus has a discoid shape rather than a normal semilunar one. Several medial meniscus anomalies including anomalous insertion have been reported in the literature. This report presents a rare case of symptomatic complete discoid medial meniscus whose anterolateral (apical) portion was completely coalesced with the ACL.
View Article and Find Full Text PDFThe exploitation of effective strategies to accelerate the Na diffusion kinetics and improve the structural stability in the electrode is extremely important for the development of high efficientcy sodium-ion batteries. Herein, Se vacancies and heterostructure engineering are utilized to improve the Na -storage performance of transition metal selenides anode prepared through a facile two-in-one route. The experimental results coupled with theoretical calculations reveal that the successful construction of the Se vacancies and heterostructure interfaces can effectively lower the Na diffusion barrier, accelerate the charge transfer efficiency, improve Na adsorption ability, and provide an abundance of active sites.
View Article and Find Full Text PDFAqueous zinc ion batteries (ZIBs) have been extensively investigated as a next-generation energy storage system due to their high safety and low cost. However, the critical issues of irregular dendrite growth and intricate side reactions severely restrict the further industrialization of ZIBs. Here, a strategy to fabricate a semi-immobilized ionic liquid interface layer is proposed to protect the Zn anode over a wide temperature range from -35 to 60 °C.
View Article and Find Full Text PDFLithium-ion batteries using either liquid electrolytes or solid electrolytes have been extensively studied in recent years, but both of these encounter safety risks such as flammability of liquid electrolytes and uncontrolled dendrite growth. In this study, a sandwich gel polymer electrolyte (SGPE) with a thermal shutdown function was developed to resolve the safety issues. By adjustment of surface pore size of the SGPE, lithium dendrite growth is suppressed.
View Article and Find Full Text PDFWith the growing demands for large-scale energy storage, Zn-ion batteries (ZIBs) with distinct advantages, including resource abundance, low-cost, high-safety, and acceptable energy density, are considered as potential substitutes for Li-ion batteries. Although numerous efforts are devoted to design and develop high performance cathodes and aqueous electrolytes for ZIBs, many challenges, such as hydrogen evolution reaction, water evaporation, and liquid leakage, have greatly hindered the development of aqueous ZIBs. Developing "beyond aqueous" electrolytes can be able to avoid these issues due to the absence of water, which are beneficial for the achieving of highly efficient ZIBs.
View Article and Find Full Text PDFAqueous potassium-ion batteries are long-term pursued, due to their excellent performance and intrinsic superiority in safe, low-cost storage for portable and grid-scale applications. However, the notorious issues of K-ion battery chemistry are the inferior cycling stability and poor rate performance, due to the inevitably destabilization of the crystal structure caused by K-ions with pronouncedly large ionic radius. Here, we resolve such issues by reconstructing commercial vanadium oxide (α-VO) into the bronze form, , δ-KVO (KVO) nanobelts, as cathode materials with layered structure of enlarged space and anisotropic pathways for K-ion storage.
View Article and Find Full Text PDFβ-catenin and endothelial mesenchymal transformation play an important role in the formation of pulmonary hypertension. To explore the role of β-catenin in chronic thromboembolic pulmonary hypertension (CTEPH), we first established a rat model of CTEPH by repeated autologous thromboembolization and then treated these rats with a β-catenin specific inhibitor, XAV939, for two or four weeks. We further examined the expression of β-catenin, α-SMA and CD31, mean pulmonary artery pressure (mPAP), and histopathology in the pulmonary artery, and analyzed their correlation.
View Article and Find Full Text PDFAn ionic-liquid-based Zn salt electrolyte is demonstrated to be an effective route to solve both the side-reaction of the hydrogen evolution reaction (HER) and Zn-dendrite growth in Zn-ion batteries. The developed electrolyte enables hydrogen-free, dendrite-free Zn plating/stripping over 1500 h cycle (3000 cycles) at 2 mA cm with nearly 100% coulombic efficiency. Meanwhile, the oxygen-induced corrosion and passivation are also effectively suppressed.
View Article and Find Full Text PDFNonmetallic ammonium (NH ) ions are applied as charge carriers for aqueous batteries, where hexagonal MoO is initially investigated as an anode candidate for NH storage. From experimental and first-principle calculated results, the battery chemistry proceeds with reversible building-breaking behaviors of hydrogen bonds between NH and tunneled MoO electrode frameworks, where the ammoniation/deammoniation mechanism is dominated by nondiffusion-controlled pseudocapacitive behavior. Outstanding electrochemical performance of MoO for NH storage is delivered with 115 mAh g at 1 C and can retain 32 mAh g at 150 C.
View Article and Find Full Text PDFAn amidation-dominated re-assembly strategy is developed to prepare uniform single atom Ni/S/C nanotubes. In this re-assembly process, a single-atom design and nano-structured engineering are realized simultaneously. Both the NiO single-atom active centers and nanotube framework endow the Ni/S/C ternary composite with accelerated reaction kinetics for potassium-ion storage.
View Article and Find Full Text PDFIn this work, a dual-lithium salt was proposed for constructing an electrolyte for high energy density lithium ion batteries. LiPOF was composed with traditional LiPF to enhance the high voltage performance of the electrolyte. The electrochemical performance of the NCM811/Li cells with LiPOF/LiPF dual-lithium salt at 2.
View Article and Find Full Text PDFConventional microsized and nanosized secondary battery electrodes inevitably suffer from poor rate capability and low tap density, respectively. Inspired by a multipolar neuron consisting of a centric micron-soma and multiple divergent nanodendrites, we propose a smart electrode design based on a two-dimensional (2D) multiscale synergistic strategy, for addressing both of the above problems. As a proof of concept, multiple Zn-doped Co-based regional-nanoarrays are grown on one Co-doped Zn-based micron-star in a 2D mode a facile one-pot liquid-phase process, serving as a representative neuron-mimic anode for lithium-ion batteries.
View Article and Find Full Text PDF