Enzymes of the central metabolism tend to assemble into transient supramolecular complexes. However, the functional significance of the interactions, particularly between enzymes catalyzing non-consecutive reactions, remains unclear. Here, by co-localizing two non-consecutive enzymes of the TCA cycle from Bacillus subtilis, malate dehydrogenase (MDH) and isocitrate dehydrogenase (ICD), in phase separated droplets we show that MDH-ICD interaction leads to enzyme agglomeration with a concomitant enhancement of ICD catalytic rate and an apparent sequestration of its reaction product, 2-oxoglutarate.
View Article and Find Full Text PDFThe rampant variability in codon bias existing between bacterial genomes is expected to interfere with horizontal gene transfer (HGT), a phenomenon that drives bacterial adaptation. However, delineating the constraints imposed by codon bias on functional integration of the transferred genes is complicated by multiple genomic and functional barriers controlling HGT, and by the dependence of the evolutionary outcomes of HGT on the host's environment. Here, we designed an experimental system in which codon composition of the transferred genes is the only variable triggering fitness change of the host.
View Article and Find Full Text PDFNatural product methyltransferases (NPMTs) represent an emerging class of enzymes that can be of great use for the structural and functional diversification of bioactive compounds, such as the strategic modification of C-, N-, O- and S-moieties. To assess the activity and the substrate scope of the ever-expanding repertoire of NPMTs, a simple, fast, and robust assay is needed. Here, we report a continuous spectroscopic assay, in which S-adenosyl-L-methionine-dependent methylation is linked to NADH oxidation through the coupled activities of S-adenosyl-L-homocysteine (SAH) deaminase and glutamate dehydrogenase.
View Article and Find Full Text PDFHomomers are prevalent in bacterial proteomes, particularly among core metabolic enzymes. Homomerization is often key to function and regulation, and interfaces that facilitate the formation of homomeric enzymes are subject to intense evolutionary change. However, our understanding of the molecular mechanisms that drive evolutionary variation in homomeric complexes is still lacking.
View Article and Find Full Text PDF-Adenosylmethionine lyase (SAMase) of bacteriophage T3 degrades the intracellular SAM pools of the host Escherichia coli cells, thereby inactivating a crucial metabolite involved in a plethora of cellular functions, including DNA methylation. SAMase is the first viral protein expressed upon infection, and its activity prevents methylation of the T3 genome. Maintenance of the phage genome in a fully unmethylated state has a profound effect on the infection strategy.
View Article and Find Full Text PDFThe relationship between sequence variation and phenotype is poorly understood. Here, we use metabolomic analysis to elucidate the molecular mechanism underlying the filamentous phenotype of E. coli strains that carry destabilizing mutations in dihydrofolate reductase (DHFR).
View Article and Find Full Text PDFEvolutionary dynamics in large asexual populations is strongly influenced by multiple competing beneficial lineages, most of which segregate at very low frequencies. However, technical barriers to tracking a large number of these rare lineages in bacterial populations have so far prevented a detailed elucidation of evolutionary dynamics. Here, we overcome this hurdle by developing a chromosomal-barcoding technique that allows simultaneous tracking of approximately 450,000 distinct lineages in Escherichia coli, which we use to test the effect of sub-inhibitory concentrations of common antibiotics on the evolutionary dynamics of low-frequency lineages.
View Article and Find Full Text PDFMethionine S-adenosyltransferases (MATs) are predominantly homotetramers, comprised of dimers of dimers. The larger, highly conserved intradimeric interface harbors two active sites, making the dimer the obligatory functional unit. However, functionality of the smaller, more diverged, and recently evolved interdimeric interface is largely unknown.
View Article and Find Full Text PDFGene dosage toxicity (GDT) is an important factor that determines optimal levels of protein abundances, yet its molecular underpinnings remain unknown. Here, we demonstrate that overexpression of DHFR in causes a toxic metabolic imbalance triggered by interactions with several functionally related enzymes. Though deleterious in the overexpression regime, surprisingly, these interactions are beneficial at physiological concentrations, implying their functional significance .
View Article and Find Full Text PDFBridging the gap between the molecular properties of proteins and organismal/population fitness is essential for understanding evolutionary processes. This task requires the integration of the several physical scales of biological organization, each defined by a distinct set of mechanisms and constraints, into a single unifying model. The molecular scale is dominated by the constraints imposed by the physico-chemical properties of proteins and their substrates, which give rise to trade-offs and epistatic (non-additive) effects of mutations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2016
Fitness landscapes of drug resistance constitute powerful tools to elucidate mutational pathways of antibiotic escape. Here, we developed a predictive biophysics-based fitness landscape of trimethoprim (TMP) resistance for Escherichia coli dihydrofolate reductase (DHFR). We investigated the activity, binding, folding stability, and intracellular abundance for a complete set of combinatorial DHFR mutants made out of three key resistance mutations and extended this analysis to DHFR originated from Chlamydia muridarum and Listeria grayi We found that the acquisition of TMP resistance via decreased drug affinity is limited by a trade-off in catalytic efficiency.
View Article and Find Full Text PDFHorizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.
View Article and Find Full Text PDFPredicting evolutionary paths to antibiotic resistance is key for understanding and controlling drug resistance. When considering a single final resistant genotype, epistatic contingencies among mutations restrict evolution to a small number of adaptive paths. Less attention has been given to multi-peak landscapes, and while specific peaks can be favoured, it is unknown whether and how early a commitment to final fate is made.
View Article and Find Full Text PDFLinking the molecular effects of mutations to fitness is central to understanding evolutionary dynamics. Here, we establish a quantitative relation between the global effect of mutations on the E. coli proteome and bacterial fitness.
View Article and Find Full Text PDFThis protocol is used to assay the effect of protein over-expression on fitness of . It is based on a plasmid expression of a protein of interest from an arabinose-regulated pBAD promoter followed by the measurement of the intracellular protein abundance by Western blot along with the measurement of growth parameters of cell expressing this protein.
View Article and Find Full Text PDFWhat are the molecular properties of proteins that fall on the radar of protein quality control (PQC)? Here we mutate the E. coli's gene encoding dihydrofolate reductase (DHFR) and replace it with bacterial orthologous genes to determine how components of PQC modulate fitness effects of these genetic changes. We find that chaperonins GroEL/ES and protease Lon compete for binding to molten globule intermediate of DHFR, resulting in a peculiar symmetry in their action: overexpression of GroEL/ES and deletion of Lon both restore growth of deleterious DHFR mutants and most of the slow-growing orthologous DHFR strains.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2012
Mutations create the genetic diversity on which selective pressures can act, yet also create structural instability in proteins. How, then, is it possible for organisms to ameliorate mutation-induced perturbations of protein stability while maintaining biological fitness and gaining a selective advantage? Here we used site-specific chromosomal mutagenesis to introduce a selected set of mostly destabilizing mutations into folA--an essential chromosomal gene of Escherichia coli encoding dihydrofolate reductase (DHFR)--to determine how changes in protein stability, activity, and abundance affect fitness. In total, 27 E.
View Article and Find Full Text PDFThe divergence of new gene functions is described by various scenarios that involve gene duplication, albeit, at fundamentally different stages. We performed experimental measurements and developed a subsequent model, aimed at predicting the rate of divergence under different scenarios. We used gene libraries of TEM-1 beta-lactamase that were drifted under purifying selection toward the original penicillinase activity or under no selection at all.
View Article and Find Full Text PDFWhat changes occur when a natural protein that had been under low mutation rates is subjected to a neutral drift at high mutational loads, thus generating genetically diverse (polymorphic) gene ensembles that all maintain the protein's original function and structure? To address this question we subjected large populations of TEM-1 beta-lactamase to a prolonged neutral drift, applying high mutation rates and purifying selection to maintain TEM-1's existing penicillinase activity. Purging of deleterious mutations and enrichment of beneficial ones maintained the sequence of these ensembles closer to TEM-1's family consensus and inferred ancestor. In particular, back-to-consensus/ancestor mutations that increase TEM-1's kinetic and thermodynamic stability were enriched.
View Article and Find Full Text PDFWe address recent developments in the area of laboratory, or directed evolution, with a focus on enzymes and on new methodologies of generic potential. We survey three main areas: (i) library making techniques, including the application of computational and rational methods for library design; (ii) screening and selection techniques, including recent applications of enzyme screening by FACS (fluorescence activated cell sorter); (iii) new approaches for performing directed evolution, and in particular, the application of 'neutral drifts' (libraries generated by rounds of mutation and selection for the enzyme's original function) and of consensus mutations to generate highly evolvable starting points for directed evolution.
View Article and Find Full Text PDFThe distribution of fitness effects of protein mutations is still unknown. Of particular interest is whether accumulating deleterious mutations interact, and how the resulting epistatic effects shape the protein's fitness landscape. Here we apply a model system in which bacterial fitness correlates with the enzymatic activity of TEM-1 beta-lactamase (antibiotic degradation).
View Article and Find Full Text PDF