Publications by authors named "Shimkets R"

IL-25 is implicated in the pathogenesis of viral asthma exacerbations. However, the effect of IL-25 on antiviral immunity has yet to be elucidated. We observed abundant expression and colocalization of IL-25 and IL-25 receptor at the apical surface of uninfected airway epithelial cells and rhinovirus infection increased IL-25 expression.

View Article and Find Full Text PDF

There is intense interest in induction and characterization of strain-transcending neutralizing Ab against antigenically variable human pathogens. We have recently identified the human malaria parasite Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) as a target of broadly neutralizing Abs, but there is little information regarding the functional mechanism(s) of Ab-mediated neutralization. In this study, we report that vaccine-induced polyclonal anti-PfRH5 Abs inhibit the tight attachment of merozoites to erythrocytes and are capable of blocking the interaction of PfRH5 with its receptor basigin.

View Article and Find Full Text PDF

Members of the T cell, Ig domain and mucin domain (Tim) family of proteins have recently been implicated in the control of T cell-mediated immune responses. Tim-1 (HUGO designation HAVCR1) polymorphisms have been linked to the regulation of atopy in mice and humans, suggestive of a role in immune regulation. Tim-1 is expressed upon activation of T cells.

View Article and Find Full Text PDF

We describe here the GeneCalling method for the discovery of differentially expressed genes, both known and novel, from any species and with useful sequence information to determine the potential function of novel genes captured. The method relies on transcript visualization coupled to a database query to rapidly and quantitatively identify differentially expressed transcripts. The method has been applied to a wide variety of disease models in a wide variety of species, addressing problems as diverse as identifying novel human cancer gene targets, understanding how drugs and diet affect animal models of disease, and understanding the basis of trait differences in related strains of corn.

View Article and Find Full Text PDF

Oncogenic osteomalacia (OO), a tumor-associated phosphate-wasting syndrome, provides an opportunity to identify regulators of renal phosphate homeostasis. We established cultures from OO-associated tumors. Conditioned medium from these cultures inhibited phosphate uptake in renal tubular epithelial cells.

View Article and Find Full Text PDF

We describe the GeneCalling method for the discovery of differentially expressed genes, both known and novel, from any species including useful sequence information to determine the potential function of novel genes captured. The method relies on transcript visualization coupled to a database query to rapidly and quantitatively identify differentially expressed transcripts. The method has been applied to a wide variety of disease models in a variety of species, addressing problems as diverse as identifying novel human cancer gene targets, understanding how drugs and diet affect animal models of disease, and understanding the basis of trait differences in related strains of corn.

View Article and Find Full Text PDF

Scientists routinely talk and write about gene expression and the abundance of transcripts, but in reality they extrapolate this information from the various measurements that a variety of different technologies provide. Indeed, there are many reasons why applying different technologies to the problem of transcript abundance may give different results, owing to an incomplete understanding of the gene in question or from shortcomings in the applications of the technologies. There are nine basic considerations for making a technology choice for quantitating gene expression that will impact the overall outcome: architecture, specificity, sensitivity, sample requirement, coverage, throughput, cost, reproducibility, and data management.

View Article and Find Full Text PDF

Drosophila melanogaster is a proven model system for many aspects of human biology. Here we present a two-hybrid-based protein-interaction map of the fly proteome. A total of 10,623 predicted transcripts were isolated and screened against standard and normalized complementary DNA libraries to produce a draft map of 7048 proteins and 20,405 interactions.

View Article and Find Full Text PDF

The angiopoietins comprise a family of proteins that have pro or antiangiogenic activities. Through a proprietary technology designed to identify transcripts of all expressed genes, we isolated a cDNA encoding an angiopoietin-related protein that we designate angioarrestin. The mRNA expression profile of angioarrestin was striking in that it was down-regulated in many tumor tissues when compared with adjacent nontumor tissue, suggesting a role for this protein in tumor inhibition.

View Article and Find Full Text PDF

Platelet-derived growth factor (PDGF) has been directly implicated in developmental and physiological processes, as well as in human cancer, fibrotic diseases and arteriosclerosis. The PDGF family currently consists of at least three gene products, PDGF-A, PDGF-B and PDGF-C, which selectively signal through two PDGF receptors (PDGFRs) to regulate diverse cellular functions. After two decades of searching, PDGF-A and B were the only ligands identified for PDGFRs.

View Article and Find Full Text PDF

The fibroblast growth factor (FGF) family of signaling molecules has been implicated in normal developmental and physiological processes, as well as in human malignancy. Using a homology-based genomic DNA mining process, we identified a human gene encoding a novel member of the FGF family, that we designate FGF-20. The FGF-20 cDNA was isolated, and its sequence confirmed the gene prediction.

View Article and Find Full Text PDF

The explosion of information generated by large-scale functional genomics technologies has resulted in an exponential increase in the number of potential genes and proteins available for pharmaceutical and diagnostic research development. In order to tap this potential, the primary challenge is to develop a strategy to effectively integrate and extract meaning from the human genomic sequence information that has been generated since the start of the Human Genome Project. This article deals with the strategies being applied by academics and by the biotechnology sector to sort and triage this information with the ultimate goal of identifying future therapeutic targets for cancer and other diseases.

View Article and Find Full Text PDF

The association of inheritance of different apolipoprotein E (APOE, gene; apoE, protein) alleles with the risk and rate of onset of Alzheimer's disease (AD) is now well established and widely confirmed. While there are now a collection of hypotheses concerning the specific relationship of APOE polymorphisms to various phenotypic manifestations of AD, no single compelling theory has been tested and universally accepted. The only clear fact emerging during the past 6 years is that differences in APOE genotype affect the average rate of disease onset as a predictable function of the inheritance of this polymorphic gene.

View Article and Find Full Text PDF

Absence of the hormone leptin leads to dramatic increases in appetite, food intake, and adiposity. The primary site of action, at least with respect to appetite, is the hypothalamus. Leptin also has significant effects on the function(s) of peripheral organs involved in maintaining body composition.

View Article and Find Full Text PDF

Previously, we described AGM-derived endothelial cell lines that either inhibited or permitted the development of erythroid or B cells. We utilized a differential gene expression method to isolate a chemokine, termed WECHE, from one of these cell lines. WECHE inhibited the formation of erythroid cells but had no effect on either myeloid or B cell formation.

View Article and Find Full Text PDF

We describe an mRNA profiling technique for determining differential gene expression that utilizes, but does not require, prior knowledge of gene sequences. This method permits high-throughput reproducible detection of most expressed sequences with a sensitivity of greater than 1 part in 100,000. Gene identification by database query of a restriction endonuclease fingerprint, confirmed by competitive PCR using gene-specific oligonucleotides, facilitates gene discovery by minimizing isolation procedures.

View Article and Find Full Text PDF

The activity of the epithelial sodium channel (ENaC) in the distal nephron is regulated by an antidiuretic hormone, aldosterone, and insulin, but the molecular mechanisms that mediate these hormonal effects are mostly unknown. We have investigated whether aldosterone, insulin, or activation of protein kinases has an effect on the phosphorylation of the channel. Experiments were performed in an epithelial cell line generated by stable cotransfection of the three subunits (alpha, beta, and gamma) of ENaC.

View Article and Find Full Text PDF

Activity of the epithelial sodium channel (ENaC) is a key determinant of sodium homeostasis and blood pressure. Liddle's syndrome, an inherited form of hypertension, is caused by mutations that delete or alter PY domains in the carboxyl termini of beta or gamma ENaC subunits, leading to increased channel activity. In this study we investigated the mechanism of this effect by analysis of wild-type and mutant ENaC activity in Xenopus oocytes.

View Article and Find Full Text PDF

Gorlin syndrome is an autosomal dominant disorder characterized by multiple basal cell carcinomas, medulloblastomas, ovarian fibromas, and a variety of developmental defects. All affected individuals share certain key features, but there is significant phenotypic variability within and among kindreds with respect to malformations. The gene (NBCCS) maps to chromosome 9q22, and allelic loss at this location is common in tumors from Gorlin syndrome patients.

View Article and Find Full Text PDF

The application of genetic strategies to studies of the pathogenesis of hypertension has proceeded on multiple fronts in the past year and has provided new insight into disease pathogenesis. Studies of monogenic forms of hypertension have led to the identification of genes causing Liddle's syndrome and the syndrome of apparent mineralocorticoid excess, while studies of essential hypertension have examined the potential roles of a number of candidate genes. Animal models have been exploited, both by mapping of naturally occurring mutations that alter blood pressure and by physiologic analysis of animals harboring specific engineered mutations.

View Article and Find Full Text PDF

Autosomal recessive pseudohypoaldosteronism type I is a rare life-threatening disease characterized by severe neonatal salt wasting, hyperkalaemia, metabolic acidosis, and unresponsiveness to mineralocorticoid hormones. Investigation of affected offspring of consanguineous union reveals mutations in either the alpha or beta subunits of the amiloride-sensitive epithelial sodium channel in five kindreds. These mutations are homozygous in affected subjects, co-segregate with the disease, and introduce frameshift, premature termination or missense mutations that result in loss of channel activity.

View Article and Find Full Text PDF

Liddle syndrome is a mendelian form of hypertension characterized by constitutively elevated renal Na reabsorption that can result from activating mutations in the beta or gamma subunit of the epithelial Na channel. All reported mutations have deleted the last 45-76 normal amino acids from the cytoplasmic C terminus of one of these channel subunits. While these findings implicate these terminal segments in the normal negative regulation of channel activity, they do not identify the amino acid residues that are critical targets for these mutations.

View Article and Find Full Text PDF

Sensitivity of blood pressure to dietary salt is a common feature in subjects with hypertension. These features are exemplified by the mendelian disorder, Liddle's syndrome, previously shown to arise from constitutive activation of the renal epithelial sodium channel due to mutation in the beta subunit of this channel. We now demonstrate that this disease can also result from a mutation truncating the carboxy terminus of the gamma subunit of this channel; this truncated subunit also activates channel activity.

View Article and Find Full Text PDF