Publications by authors named "Shimin Yu"

Objectives: To reveal the force profiles recorded by haptic autonomous robotic force feedback during the transcrestal sinus floor elevation (TSFE) process, providing a reference for the surgery strategy during TSFE.

Materials And Methods: A total of 42 maxillary sinus models with different angles of the sinus floor (30°, 40°, 50°, 60°, 70°, 80°, and 90°, compared to vertical plane) were 3D printed. Implant site preparation was performed using a robotic system, and the total force (Ft) and axial force along the drill (Fz) during the surgery were recorded by the haptic robotic arm.

View Article and Find Full Text PDF
Article Synopsis
  • - The study evaluated the accuracy and effectiveness of robot-assisted implant surgery performed by four dental professionals with different levels of experience, including an undergraduate student, a dental resident, and two specialists with varying robot exposure.
  • - Each participant underwent extensive training and then completed five robotic-assisted implant procedures, with accuracy measured through angular deviation and deviations at implant points, while also recording procedure times.
  • - Results showed similar accuracy levels across all operators, indicating that robotic implant surgery is effective regardless of the operator's experience, and as they performed more operations, the time taken for surgeries decreased without compromising accuracy.
View Article and Find Full Text PDF

Recent years have witnessed a surge in the application of microrobots within the medical sector, with hydrogel microrobots standing out due to their distinctive advantages. These microrobots, characterized by their exceptional biocompatibility, adjustable physico-mechanical attributes, and acute sensitivity to biological environments, have emerged as pivotal tools in advancing medical applications such as targeted drug delivery, wound healing enhancement, bio-imaging, and precise surgical interventions. The capability of hydrogel microrobots to navigate and perform tasks within complex biological systems significantly enhances the precision, efficiency, and safety of therapeutic procedures.

View Article and Find Full Text PDF

Objectives: To compare the accuracy of immediate implant placement of cylindrical implants (CI) and tapered implants (TI) of different lengths using a robotic dental implant system.

Materials And Methods: CI and TI of three lengths (8, 10, and 12 mm) each were digitally planned and placed in a three-dimensional printed extraction socket model under robotic guidance. There were six groups with three samples in each group, resulting in a total of 18 samples.

View Article and Find Full Text PDF

A growing interest in the development of efficient strategies for the removal of organic pollutants from polluted water is emerging. As such, artificial micro/nano machines performing excellent water purification tasks have recently attracted more research attention of scientists. Hereby a spinous FeO@PPy microrobot is presented that towards an efficient organic pollutant removal by enhancing Fenton-like reaction.

View Article and Find Full Text PDF

Backgroud: Regardless of application scenarios, proper mechanical characteristics and degradation properties are prerequisites for horizontal platelet rich fibrin (H-PRF) to manifest its ability. Among the methods used to modify PRF, thermal manipulation is promising as it is easy to handle without adding extra additives. Yet there is no consensus on optimal temperature treatment.

View Article and Find Full Text PDF

Nowadays, global water scarcity is becoming a pressing issue, and the discharge of various pollutants leads to the biological pollution of water bodies, which further leads to the poisoning of living organisms. Consequently, traditional water treatment methods are proving inadequate in addressing the growing demands of various industries. As an effective and eco-friendly water treatment method, micro/nanorobots is making significant advancements.

View Article and Find Full Text PDF

Swimming microrobot energized by magnetic fields exhibits remotely propulsion and modulation in complex biological experiment with high precision. However, achieving high environment adaptability and multiple tasking capability in one configuration is still challenging. Here, we present a strategy that use oriented magnetized Janus spheres to assemble the microdimer robots with two magnetic distribution configurations of head-to-side configuration (HTS-config) and head-to-head configuration (HTH-config), achieving performance of multiple tasks through multimode transformation and locomotion.

View Article and Find Full Text PDF

Due to their enormous potential to be navigated through complex biological media or narrow capillaries, microrobots have demonstrated their potential in a variety of biomedical applications, such as assisted fertilization, targeted drug delivery, tissue repair, and regeneration. Numerous initial studies have been conducted to demonstrate the biomedical applications in test tubes and in vitro environments. Microrobots can reach human areas that are difficult to reach by existing medical devices through precise navigation.

View Article and Find Full Text PDF

Background: The effects of horizontal platelet-rich fibrin (H-PRF) bone block on the healing and immune response during sinus augmentation have not been fully investigated histologically at early time points.

Methods: Eighteenth male New Zealand white rabbits underwent bilateral sinus augmentation and were divided into two groups: deproteinized bovine bone mineral (DBBM) alone and H-PRF + DBBM (H-PRF bone block) group. Maxilla samples were collected at 3, 7 and 14 days post sinus augmentation procedures and analyzed using histological staining for the number of inflammatory cells, new blood vessels and evidence for early osteoclast bone turnover/remodeling.

View Article and Find Full Text PDF

Swimming microrobots guided in the circulation system offer considerable promise in precision medicine but currently suffer from problems such as limited adhesion to blood vessels, intensive blood flow, and immune system clearance-all reducing the targeted interaction. A swimming microrobot design with clawed geometry, a red blood cell (RBC) membrane-camouflaged surface, and magnetically actuated retention is discussed, allowing better navigation and inspired by the tardigrade's mechanical claw engagement, coupled to an RBC membrane coating, to minimize blood flow impact. Using clinical intravascular optical coherence tomography in vivo, the microrobots' activity and dynamics in a rabbit jugular vein was monitored, illustrating very effective magnetic propulsion, even against a flow of ~2.

View Article and Find Full Text PDF

Background: While suggested to be effective in tissue regeneration, the effects of horizontal platelet-rich fibrin (H-PRF) bone block in sinus augmentation have not been verified in an animal model.

Methods: A total of 12 male New Zealand white rabbits that underwent sinus augmentation were divided into two groups: deproteinized bovine bone mineral (DBBM) only and H-PRF bone block. H-PRF was prepared at 700 × g for 8 min using a horizontal centrifuge.

View Article and Find Full Text PDF

Drugs based on synthetic lethality have advantages such as inhibiting tumor growth and affecting normal tissue . However, specific targets for osteosarcoma have not been acknowledged yet. In this study, a non-targeted but controllable drug delivery system has been applied to selectively enhance synthetic lethality in osteosarcoma , using the magnetic-driven hydrogel microrobots.

View Article and Find Full Text PDF

Highly effective contrast enhancer that processes targeting ability and maneuverability is in great demand in clinics for accurate diagnosis. Here a new strategy using deformable and manipulatable magnetic microswarm as MRI contrast enhancer is developed. Magnetic microswarm aggregated from nanoparticles is inherently deformable and they can be controlled with multiple programmable deform abilities.

View Article and Find Full Text PDF

In this study, we propose a highly efficient robot platform for pollutant adsorption. This robot system consists of a flapping-wing micro aircraft (FWMA) for long-distance transportation and delivery and cost-effective multifunctional Janus microrobots for pollutant purification. The flapping-wing micro air vehicle can hover for 11.

View Article and Find Full Text PDF

With the rapid development of nanotechnology, nanoparticles (NPs) are widely used in all fields of life. Nowadays, NPs have shown extraordinary antimicrobial activities and become one of the most popular strategies to combat antibiotic resistance. Whether they are equally effective in combating bacterial persistence, another important reason leading to antibiotic treatment failure, remains unknown.

View Article and Find Full Text PDF

Photothermal nanoparticles are thought to be the most suitable candidates against infectious disease by disrupting the cell membrane or inhibiting cellular metabolism. However, cells with low-metabolic activity states may be endowed with greater ability against harsh environments including antibiotic treatment. For now, it remains unexplored whether and how photothermal therapy (PTT) gives rise to bacterial antibiotic tolerance.

View Article and Find Full Text PDF

With the development of designed materials and structures, a wide array of micro/nanomachines with versatile functionalities are employed for specific sensing applications. Here, we demonstrated a magnetic propelled microdimer-based point-of-care testing system, which can be used to provide the real-time data of plasma glucose and lipids relying on the motion feedback of mechanical properties. On-demand and programmable speed and direction of the microdimers can be achieved with the judicious adjustment of the external magnetic field, while their velocity and instantaneous postures provide estimation of glucose, cholesterol, and triglycerides concentrations with high temporal accuracy.

View Article and Find Full Text PDF

Platelet-rich fibrin (PRF) has been utilized as a substitute for resorbable membranes during guided bone regeneration therapy as it is a more bioactive biomaterial with living cells and growth factors than resorbable membranes. Nevertheless, PRF poses obvious disadvantages in its mechanical strength since its rapid degradability has been shown to typically resorb within a 2-week time period. In the present study, the barrier function and biological and mechanical properties of PRF were investigated both as standard therapy and after thermal processing.

View Article and Find Full Text PDF

Micro- and nanomachines as feasible agents to exploit the microworld have attracted extensive research interest, particularly in the manipulation of soft nanorobots at small scales. Herein, we propose a model for regulating the motion of a swinging flexible nanomotor (SFN) driven by an oscillating magnetic field. Multisegments of an SFN are synthesized from nickel, gold, and porous silver.

View Article and Find Full Text PDF

The effect of the Prandtl number () on the flow and heat transfer from a porous circular cylinder with internal heat generation in the mixed convection regime is numerically investigated. The steady flow regime is considered over the ranges of the Reynolds number (), Darcy number (), and Richardson number (), varying from 5 to 40, 10 to 10, and 0 to 2, respectively. The wake structure, the temperature distribution, and the heat transfer rate are discussed.

View Article and Find Full Text PDF

Platelet-rich fibrin (PRF) has been widely used owing to its ability to stimulate tissue regeneration. To date, few studies have described the antibacterial properties of PRF. Previously, PRF prepared by horizontal centrifugation (H-PRF) was shown to contain more immune cells than leukocyte- and platelet-rich fibrin (L-PRF).

View Article and Find Full Text PDF

A sonochemical reactor was developed to study the ultrasound-assisted cyanide extraction of gold from gold ore at low temperature. The effects of ultrasound on gold leaching in low temperature and conventional conditions were investigated. At the low temperature of 10 °C, ultrasound-assisted extraction increased extraction rate of gold by 0.

View Article and Find Full Text PDF

Recent strides in micro- and nanofabrication technology have enabled researchers to design and develop new micro- and nanorobots for biomedicine and environmental monitoring. Due to its non-invasive remote actuation and convenient navigation abilities, magnetic propulsion has been widely used in micro- and nanoscale robotic systems. In this article, a highly efficient Janus microdimer swimmer propelled by a rotating uniform magnetic field was investigated experimentally and numerically.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: