Publications by authors named "Shimin Cai"

The impact of resource allocation on the dynamics of epidemic spreading is an important topic. In real-life scenarios, individuals usually prioritize their own safety, and this self-protection consciousness will lead to delays in resource allocation. However, there is a lack of systematic research on the impact of resource allocation delay on epidemic spreading.

View Article and Find Full Text PDF
Article Synopsis
  • Astragaloside IV (ASIV) enhances the growth of endothelial progenitor cells (EPCs), which are crucial for wound healing, while a new composite delivery system (PF-PEG@ASIV-EXO) utilizes exosomes and hydrogels to target these cells effectively.
  • The study evaluated the biocompatibility of the PF-PEG@ASIV-EXO system and its effects on EPC function, including cell viability, blood vessel formation (angiogenesis), and cellular health in high-glucose environments resembling diabetes.
  • Results from diabetic rat wounds showed that PF-PEG@ASIV-EXO not only increased the healing process but also elevated important markers for blood vessels and reduced harmful cell death,
View Article and Find Full Text PDF

Investigations on spreading dynamics based on complex networks have received widespread attention these years due to the COVID-19 epidemic, which are conducive to corresponding prevention policies. As for the COVID-19 epidemic itself, the latent time and mobile crowds are two important and inescapable factors that contribute to the significant prevalence. Focusing on these two factors, this paper systematically investigates the epidemic spreading in multiple spaces with mobile crowds.

View Article and Find Full Text PDF

With the development of information technology, more and more travel data have provided great convenience for scholars to study the travel behavior of users. Planning user travel has increasingly attracted researchers' attention due to its great theoretical significance and practical value. In this study, we not only consider the minimum fleet size required to meet the urban travel needs but also consider the travel time and distance of the fleet.

View Article and Find Full Text PDF

Describing travel patterns and identifying significant locations is a crucial area of research in transportation geography and social dynamics. Our study aims to contribute to this field by analyzing taxi trip data from Chengdu and New York City. Specifically, we investigate the probability density distribution of trip distance in each city, which enables us to construct long- and short-distance trip networks.

View Article and Find Full Text PDF

Predicting the admission scores of colleges and universities is significant for high school graduates in the College Entrance Examination in China (which is also called "Gaokao" for short). The practice of parallel application for the students after Gaokao not only puts forward a question about how students could make the best of their scores and make the best choice, but also results in the strong competition among different colleges and universities, with the institutions all striving to admit high-performing students in this examination. However, existing prevailing prediction algorithms and models of the admission score of the colleges and universities based on machine learning methods do not take such competitive relationship into consideration, but simply make predictions for individual college or university, causing low predication accuracy and poor generalization capability.

View Article and Find Full Text PDF
Article Synopsis
  • - This study investigates how information awareness affects epidemic spread, using a model that combines awareness, resource allocation, and epidemic dynamics across complex networks.
  • - Key findings reveal that increased resource support among individuals leads to lower infection rates and a higher threshold for disease outbreaks, while prioritizing protection for less connected individuals enhances control.
  • - The research also highlights that contact preferences and inter-layer correlations can either hinder or aid disease control, with global epidemic information proving more effective than local information in reducing infection density.
View Article and Find Full Text PDF

Major depressive disorder (MDD) is the second leading cause of disability worldwide. Currently, the structural magnetic resonance imaging-based MDD diagnosis models mainly utilize local grayscale information or morphological characteristics in a single site with small samples. Emerging evidence has demonstrated that different brain structures in different circuits have distinct developmental timing, but mature coordinately within the same functional circuit.

View Article and Find Full Text PDF

Background: Technological and research advances have produced large volumes of biomedical data. When represented as a network (graph), these data become useful for modeling entities and interactions in biological and similar complex systems. In the field of network biology and network medicine, there is a particular interest in predicting results from drug-drug, drug-disease, and protein-protein interactions to advance the speed of drug discovery.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a range of neurodevelopmental disorders with behavioral and cognitive impairment and brings huge burdens to the patients' families and the society. To accurately identify patients with ASD from typical controls is important for early detection and early intervention. However, almost all the current existing classification methods for ASD based on structural MRI (sMRI) mainly utilize the independent local morphological features and do not consider the covariance patterns of these features between regions.

View Article and Find Full Text PDF

City taxi service systems have been empirically studied by a number of data-driven methods. However, their underlying mechanisms are hard to understand because the present mathematical models neglect to explain a (whole) taxi service process that includes a pair of on-load phase and off-load phase. In this paper, by analyzing a large amount of taxi servicing data from a large city in China, we observe that the taxi service process shows different temporal and spatial features according to the on-load phase and off-load phase.

View Article and Find Full Text PDF

Recent studies have demonstrated that the allocation of individual resources has a significant influence on the dynamics of epidemic spreading. In the real scenario, individuals have a different level of awareness for self-protection when facing the outbreak of an epidemic. To investigate the effects of the heterogeneous self-awareness distribution on the epidemic dynamics, we propose a resource-epidemic coevolution model in this paper.

View Article and Find Full Text PDF

Adding edges between layers of interconnected networks is an important way to optimize the spreading dynamics. While previous studies mostly focused on the case of adding a single edge, the theoretical optimal strategy for adding multiple edges still need to be studied. In this study, based on the susceptible-infected-susceptible model, we investigate the problem of maximizing the stationary spreading prevalence in interconnected networks.

View Article and Find Full Text PDF

Real-world systems, ranging from social and biological to infrastructural, can be modeled by multilayer networks. Promoting spreading dynamics in multilayer networks may significantly facilitate electronic advertising and predicting popular scientific publications. In this study, we propose a strategy for promoting the spreading dynamics of the susceptible-infected-susceptible model by adding one interconnecting edge between two isolated networks.

View Article and Find Full Text PDF

Epidemic spreading processes in the real world depend on human behaviors and, consequently, are typically non-Markovian in that the key events underlying the spreading dynamics cannot be described as a Poisson random process and the corresponding event time is not exponentially distributed. In contrast to Markovian type of spreading dynamics for which mathematical theories have been well developed, we lack a comprehensive framework to analyze and fully understand non-Markovian spreading processes. Here we develop a mean-field theory to address this challenge, and demonstrate that the theory enables accurate prediction of both the transient phase and the steady states of non-Markovian susceptible-infected-susceptible spreading dynamics on synthetic and empirical networks.

View Article and Find Full Text PDF

Coinfection mechanism is a common interacting mode between multiple diseases in real spreading processes, where the diseases mutually increase their susceptibility, and has aroused widespread studies in network science. We use the bond percolation theory to characterize the coinfection model under two self-awareness control strategies, including immunization strategy and quarantine strategy, and to study the impacts of the synergy effect and control strategies on cooperative epidemics. We find that strengthening the synergy effect can reduce the epidemic threshold and enhance the outbreak size of coinfected networks.

View Article and Find Full Text PDF

Synchronization in complex networks characterizes what happens when an ensemble of oscillators in a complex autonomous system become phase-locked. We study the Kuramoto model with a tunable phase-lag parameter α in the coupling term to determine how phase shifts influence the synchronization transition. The simulation results show that the phase frustration parameter leads to desynchronization.

View Article and Find Full Text PDF

Resources are limited in epidemic containment; how to optimally allocate the limited resources in suppressing the epidemic spreading has been a challenging problem. To find an effective resource allocation strategy, we take the infectiousness of each infected node into consideration. By studying the interplay between the resource allocation and epidemic spreading, we find that the spreading dynamics of epidemic is affected by the preferential resource allocation.

View Article and Find Full Text PDF

Research on social contagion dynamics has not yet included a theoretical analysis of the ubiquitous local trend imitation (LTI) characteristic. We propose a social contagion model with a tent-like adoption probability to investigate the effect of this LTI characteristic on behavior spreading. We also propose a generalized edge-based compartmental theory to describe the proposed model.

View Article and Find Full Text PDF

One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem.

View Article and Find Full Text PDF

Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing interest in behavior spreading dynamics on multiplex networks.

View Article and Find Full Text PDF

Although recent studies have found that the long-term correlations relating to the fat-tailed distribution of inter-event times exist in human activity and that these correlations indicate the presence of fractality, the property of fractality and its origin have not been analyzed. We use both detrended fluctuation analysis and multifractal detrended fluctuation analysis to analyze the time series in online viewing activity separating from Movielens and Netflix. We find long-term correlations at both the individual and communal levels and that the extent of correlation at the individual level is determined by the activity level.

View Article and Find Full Text PDF

Methods used in information filtering and recommendation often rely on quantifying the similarity between objects or users. The used similarity metrics often suffer from similarity redundancies arising from correlations between objects' attributes. Based on an unweighted undirected object-user bipartite network, we propose a Corrected Redundancy-Eliminating similarity index (CRE) which is based on a spreading process on the network.

View Article and Find Full Text PDF

Time-varying community structures exist widely in real-world networks. However, previous studies on the dynamics of spreading seldom took this characteristic into account, especially those on social contagions. To study the effects of time-varying community structures on social contagions, we propose a non-Markovian social contagion model on time-varying community networks based on the activity-driven network model.

View Article and Find Full Text PDF