Publications by authors named "Shimei Gong"

CLC transporters catalyze the exchange of Cl(-) for H(+) across cellular membranes. To do so, they must couple Cl(-) and H(+) binding and unbinding to protein conformational change. However, the sole conformational changes distinguished crystallographically are small movements of a glutamate side chain that locally gates the ion-transport pathways.

View Article and Find Full Text PDF

Escherichia coli survives pH 2 acid stress at a level rivalling Helicobacter pylori. Of the three E. coli acid resistance systems involved, the one most efficient and most studied uses isozymes of glutamate decarboxylase (GadA/GadB) to consume intracellular protons, and a glutamate:gamma-amino butyric acid (GABA) anti-porter (GadC) to expel GABA in exchange for extracellular glutamate.

View Article and Find Full Text PDF

Commensal and pathogenic strains of Escherichia coli possess three inducible acid resistance systems that collaboratively protect cells against acid stress to pH 2 or below. The most effective system requires glutamate in the acid challenge media and relies on two glutamate decarboxylases (GadA and B) combined with a putative glutamate:gamma-aminobutyric acid antiporter (GadC). A complex network of regulators mediates induction of this system in response to various media, pH and growth phase signals.

View Article and Find Full Text PDF

To survive in extremely acidic conditions, Escherichia coli has evolved three adaptive acid resistance strategies thought to maintain internal pH. While the mechanism behind acid resistance system 1 remains enigmatic, systems 2 and 3 are known to require external glutamate (system 2) and arginine (system 3) to function. These latter systems employ specific amino acid decarboxylases and putative antiporters that exchange the extracellular amino acid substrate for the intracellular by-product of decarboxylation.

View Article and Find Full Text PDF

Antimetabolite drugs that inhibit nucleic acid metabolism are widely used in cancer chemotherapy. Nucleoside and nucleobase transporters are important for the cellular uptake of nucleic acids and their corresponding anticancer analogue drugs. Thus, these transporters may play a role both in antimetabolite drug sensitivity, by mediating the uptake of nucleoside analogues, and in antimetabolite drug resistance, by mediating the uptake of endogenous nucleosides that may rescue cells from toxicity.

View Article and Find Full Text PDF

Objective: Human organic cation transporters (OCTs) play a critical role in the cellular uptake and efflux of endogenous cationic substrates and hydrophilic exogenous xenobiotics. We sought to identify OCT genes preferentially expressed in hematopoietic cells.

Materials And Methods: We isolated a novel OCT, named OCT6, by data-mining human expressed sequence tag databases for sequences homologous to known OCT genes.

View Article and Find Full Text PDF