Publications by authors named "Shimaa Eissa"

SLFN11 is a predictive cancer biomarker essential for identifying tumors that are sensitive to DNA-damaging agents, facilitating more personalized and effective treatment approaches. Detecting this biomarker can guide therapeutic decisions and improve outcomes for cancer patients. However, existing detection methods for SLFN11 are complex and require advanced techniques.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a novel GO/Cu-MOF nanocomposite for simultaneous detection of biomarkers linked to lower respiratory infections, marking a new application in electrochemical biosensing.
  • The researchers fabricated an immunosensor using this composite that effectively detected M. pneumoniae and L. pneumophila antigens, showing strong selectivity and sensitivity across a wide concentration range.
  • The enhanced performance is attributed to the superior electrocatalytic properties and interactions of the GO-MOF composite, making it a promising tool for rapid pathogen monitoring in environmental samples.
View Article and Find Full Text PDF

The current study focused on the design of an extremely sensitive electrochemical sensor of ascorbic acid based on a mixture of NiAlO-NiO nanoparticles that, produced in a single step using the sol-gel method, on an ITO electrode. This new sensing platform is useful for the detection of ascorbic acid with a wide range of concentrations extending from the attomolar to the molar. SEM micrographs show the porous structure of the NiAlO-NiO sample, with a high specific surface area, which is beneficial for the catalytic performance of the nanocomposite.

View Article and Find Full Text PDF

This study introduces an innovative electrochemical aptasensor designed for the highly sensitive and rapid detection of Legionella pneumophila serogroup 1 (L. pneumophila SG1), a particularly virulent strain associated with Legionellosis. Employing a rigorous selection process utilizing cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX), we identified new high-affinity aptamers specifically tailored for L.

View Article and Find Full Text PDF

Pharmaceutical pollution has received considerable attention because of the harmful effects of pharmaceutical compounds on human health, even in trace amounts. Amoxicillin is one of the frequently used antibiotics that was included in the list of emerging water pollutants. Therefore, a highly selective and rapid technique for amoxicillin detection is required.

View Article and Find Full Text PDF

Claudin18.2 (CLDN18.2) is a tight junction protein often overexpressed in various solid tumors, including gastrointestinal and esophageal cancers, serving as a promising target and potential biomarker for tumor diagnosis, treatment assessment, and prognosis.

View Article and Find Full Text PDF

Neonicotinoids, sometimes abbreviated as neonics, represent a class of neuro-active insecticides with chemical similarities to nicotine. Neonicotinoids are the most widely adopted group of insecticides globally since their discovery in the late 1980s. Their physiochemical properties surpass those of previously established insecticides, contributing to their popularity in various sectors such as agriculture and wood treatment.

View Article and Find Full Text PDF

Pepsinogen I (PG I) is a biomarker that plays a crucial role in the diagnosis of gastric cancer. The development of biosensor to monitor PG I overexpression in serum is crucial for early gastric cancer diagnosis, offering a less invasive alternative to the costly and uncomfortable gastroscopy procedure. This study presents a cost-efficient, scalable and disposable label-free biosensing strategy for detecting PG I, utilizing a redox-active polymelamine electrodeposited on a reduced graphene oxide screen-printed electrode surface (PM-rGO/SPE).

View Article and Find Full Text PDF
Article Synopsis
  • Sepsis is a severe immune response to infection that can lead to organ failure, making prompt diagnosis and treatment crucial for survival.
  • This study explores the use of MMP-9 as a biomarker for early detection of sepsis, utilizing a colorimetric paper-based biosensor that changes color based on MMP-9 levels.
  • Results showed that MMP-9 levels in blood and BAL fluid increased significantly within an hour post-sepsis induction in mice, highlighting its potential as an effective early detection tool for sepsis.
View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) is a worldwide health concern. The pathophysiological features of ALI/ARDS include a pulmonary immunological response. The development of a rapid and low-cost biosensing platform for the detection of ARDS is urgently needed.

View Article and Find Full Text PDF

The miniaturization of biosensors for point-of-care diagnosis is highly important in infection control. Electrochemical biosensors offer several advantages in diagnosis in terms of cost, disposability, portability, and sensitivity. Here, a miniaturized electrochemical immunosensor combined with cotton fiber for the detection of the Middle-East respiratory syndrome coronavirus (MERS-CoV) is described.

View Article and Find Full Text PDF

Since the COVID-19 disease caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) was declared a pandemic, it has spread rapidly, causing one of the most serious outbreaks in the last century. Reliable and rapid diagnostic tests for COVID-19 are crucial to control and manage the outbreak. Here, a label-free square wave voltammetry-based biosensing platform for the detection of SARS-CoV-2 in nasopharyngeal samples is reported.

View Article and Find Full Text PDF

Aptamers are short single-stranded oligonucleotides (either DNA or RNA) that can fold into well-defined three-dimensional (3D) spatial structures which enable them to capture their specific target by complementary shape interactions. Aptamers are selected from large random libraries through the SELEX process and only a small fraction of the sequence is involved in direct docking with the target. In this paper, we describe the possible truncation variants of zearalenone (ZEA) aptamer which might be an effective binding region for the target.

View Article and Find Full Text PDF

Collection of nasopharyngeal samples using swabs followed by the transfer of the virus into a solution and an RNA extraction step to perform reverse transcription polymerase chain reaction (PCR) is the primary method currently used for the diagnosis of COVID-19. However, the need for several reagents and steps and the high cost of PCR hinder its worldwide implementation to contain the outbreak. Here, we report a cotton-tipped electrochemical immunosensor for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus antigen.

View Article and Find Full Text PDF

COVID-19 pandemic is a serious global health issue today due to the rapid human to human transmission of SARS-CoV-2, a new type of coronavirus that causes fatal pneumonia. SARS -CoV-2 has a faster rate of transmission than other coronaviruses such as SARS and MERS and until now there are no approved specific drugs or vaccines for treatment. Thus, early diagnosis is crucial to prevent the extensive spread of the disease.

View Article and Find Full Text PDF

The integration of graphene materials into electrochemical biosensing platforms has gained significant interest in recent years. Bulk quantities of graphene can be synthesized by oxidation of graphite to graphite oxide and subsequent exfoliation to graphene oxide (GO). However, the size of the resultant GO sheets changes from the parent graphite yielding a polydispersed solution of sizes ranging from a few nanometers to tens of micrometers.

View Article and Find Full Text PDF

A novel electrochemical biosensor is reported for simultaneous detection of two of the most common food-borne pathogens: Listeria monocytogenes and Staphylococcus aureus. The biosensor is composed of an array of gold nanoparticles-modified screen-printed carbon electrodes on which magnetic nanoparticles coupled to specific peptides were immobilized via streptavidin-biotin interaction. Taking advantage of the proteolytic activities of the protease enzymes produced from the two bacteria on the specific peptides, the detection was achieved in 1 min.

View Article and Find Full Text PDF

Sepiapterin reductase deficiency (SR) is a rare inborn disorder of neurotransmitter metabolism. The early diagnosis of SR disease should be achieved through the determination of the sepiapterin level in body fluids of suspected patients. Here, we report the selection, identification, and characterization of DNA aptamers against sepiapterin.

View Article and Find Full Text PDF

Point-of-care facile and economical detection of Staphylococcus aureus (S. aureus), one of the main causes of food-borne illness, is highly demanded for the early diagnosis and control of infections. Herein, inspired by the proteolytic activity of S.

View Article and Find Full Text PDF

An electrochemical aptasensor is described for determination of the phytohormone of zearalenone (ZEA). The gold electrode was modified with ZEA via covalent attachment using cysteamine-hydrochloride and 1,4-phenylene diisocyanate linker. A truncated ZEA aptamer with a dissociation constant of 13.

View Article and Find Full Text PDF

The uncontrolled usage of veterinary antibiotics has led to their widespread pollution in waterways and milk products. Potential impact of antibiotic residues on the environment and human health such as increased antibiotic resistance of microorganisms and triggering allergic reactions in humans have been reported. In this work, we developed a highly selective and sensitive voltammetric aptasensor for on-step, sensitive and low cost detection of azlocillin antibiotic, one of the broad spectrum β-lactam antibiotics.

View Article and Find Full Text PDF

The autosomal recessive-hyper immunoglobulin E syndromes (AR-HIES) are inherited inborn primary immunodeficiency disorders caused mainly by mutations in the dedicator of cytokinesis 8 (DOCK8) gene. A method is described for the selection of DNA aptamers against DOCK8 protein. The selection was performed by using a gold electrode as the solid matrix for immobilization of DOCK8.

View Article and Find Full Text PDF

Heroin, marijuana and cocaine are widely abused drugs. Their use can be readily detected by analyzing urine for the metabolites morphine (MOR), tetrahydrocannabinol (THC) or benzoylecgonine (BZC). A multiplex immunosensor is described here for detection of MOR, THC and BZC using screen printed carbon array electrodes modified with gold nanoparticles.

View Article and Find Full Text PDF