Nature-derived polymers, or biopolymers, are among the most employed materials for the development of nanocarriers. Chitosan (CS) is derived from the acetylation of chitin, and this biopolymer displays features such as biocompatibility, biodegradability, low toxicity, and ease of modification. CS-based nano-scale delivery systems have been demonstrated to be promising carriers for drug and gene delivery, and they can provide site-specific delivery of cargo.
View Article and Find Full Text PDFChanges in lifestyle such as physical activity and eating habits have been one of the main reasons for development of various diseases in modern world, especially cancer. However, role of genetic factors in initiation of cancer cannot be ignored and Wnt/β-catenin signaling is such factor that can affect tumor progression. Breast tumor is the most malignant tumor in females and it causes high mortality and morbidity around the world.
View Article and Find Full Text PDFObjectives: This study aimed to investigate the induction effects of methanolic extracts of Nigella sativa (NiS), Brassica Oleracea (BrO), and Oenothera biennia (Obi) on transgenic embryonic stem cells (ESCs) and to evaluate the ability of germ cells (GCs) production using these pluripotent cells.
Methods: ESCs were amplified using a feeder layer. Embryoid bodies enzymatically dissociated to single cells and induced the extracts in gelatinized plates.
Nanotechnology is a growing field, with many potential biomedical applications of nanomedicine for the treatment of different diseases, particularly cancer, on the horizon. Graphene oxide (GO) nanoparticles can act as carbon-based nanocarriers with advantages such as a large surface area, good mechanical strength, and the capacity for surface modification. These nanostructures have been extensively used in cancer therapy for drug and gene delivery, photothermal therapy, overcoming chemotherapy resistance, and for imaging procedures.
View Article and Find Full Text PDFEpithelial-to-mesenchymal transition (EMT) is a process that involves the transformation of polarized epithelial cells to attain a mesenchymal phenotype that presents an elevated migratory potential, invasiveness, and antiapoptotic properties. Many studies have demonstrated that EMT is a prominent event that is associated with embryogenesis, tumor progression, metastasis, and therapeutic resistance. The EMT process is driven by key transcription factors (such as Snail, Twist, ZEB, and TGF-β) and several long non-coding RNAs (lncRNAs) in many non-pathological as well as pathological conditions.
View Article and Find Full Text PDFCancer is a challenging to treat disease with a high mortality rate worldwide, nevertheless advances in science has led to a decrease in the number of death cases caused by cancer. Aberrant expression of genes occurs during tumorigenesis therefore targeting the signaling pathways that regulate these genes' expression is of importance in cancer therapy. Notch is one of the signaling pathways having interactions with other vital cell signaling molecules responsible for cellular functions such as proliferation, apoptosis, invasion, metastasis, epithelial-to-mesenchymal transition (EMT), angiogenesis, and immune evasion.
View Article and Find Full Text PDF