Publications by authors named "Shima Akar"

Development of techniques to produce nanoformulations in a controlled and reproducible manner is of great importance for research, clinical trials, and industrial scale-up. This research aimed to introduce a cost-effective micromixing approach for the nanoassembly of liposomes and compared with thin-film hydration (TFH) method. Numerical simulations and design of experiments (DOE) by response surface methodology (RSM) were used to evaluate the effects of input parameters on liposome properties, aiming to identify optimal conditions.

View Article and Find Full Text PDF

The low scalability and reproducibility of existing synthesis methods have hindered the translation of liposome nanoparticles as carriers for targeted drug delivery from conventional laboratory techniques to mass production. To this end, in this study, we present a high-throughput microfluidics-based approach for the synthesis of PEGylated liposomes with a primary focus on achieving precise size control and efficient encapsulation of hydrophobic drug molecules. In this platform, liposomes were self-assembled through a controllable mixing of lipids (EYPC, cholesterol, and DSPE-PEG 2000) dissolved in ethanol and an aqueous solution.

View Article and Find Full Text PDF

At the forefront of biopharmaceutical industry, the messenger RNA (mRNA) technology offers a flexible and scalable platform to address the urgent need for world-wide immunization in pandemic situations. This strategic powerful platform has recently been used to immunize millions of people proving both of safety and highest level of clinical efficacy against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we provide preclinical report of COReNAPCIN; a vaccine candidate against SARS-CoV-2 infection.

View Article and Find Full Text PDF