Publications by authors named "Shim Jaewoo"

The advancement in semiconductor technology through the integration of more devices on a chip has reached a point where device scaling alone is no longer an efficient way to improve the device performance. One issue lies in the interconnects connecting the transistors, in which the resistivity of metals increases exponentially as their dimensions are scaled down to match those of the transistors. As a result, the total signal processing delay is dominated by the resistance-capacitance (RC) delay from the interconnects rather than the delay from the transistors' switching speed.

View Article and Find Full Text PDF

Confinement of reactants within nanoscale spaces of low-dimensional materials has been shown to provide reorientation of strained reactants or stabilization of unstable reactants for synthesis of molecules and tuning of chemical reactivity. While few studies have reported chemistry within zero-dimensional pores and one-dimensional nanotubes, organic reactions in confined spaces between two-dimensional materials have yet to be explored. Here, we demonstrate that reactants confined between atomically thin sheets of graphene or hexagonal boron nitride experience pressures as high as 7 gigapascal, which allows the propagation of solvent-free organic reactions that ordinarily do not occur under standard conditions.

View Article and Find Full Text PDF

Purpose: The Assistive Technology (AT) Open Platform supports people with disabilities, older people, and developers in co-creating new assistive products outside the business realm. To address dissatisfaction with and non-adoption of commercial assistive products, the National Rehabilitation Centre in South Korea created an AT Open Platform as an open-source AT sharing platform to research and develop appropriate assistive technology suitable for users' needs. The emerging concept of AT Open Platform is new for both assistive product users and developers in South Korea.

View Article and Find Full Text PDF

China's higher education system is one of the largest and most complex in the world, with a vast number of higher education institutions scattered across different provinces. Evaluating the efficiency, productivity change, and technology gaps of these institutions is significant for understanding their performance and identifying areas for improvement. In this context, this study employs three different approaches, DEA super-SBM, Malmquist Productivity Index, and Meta-Frontier Analysis, to evaluate the efficiency, productivity change, and technology gaps of China's provincial higher education systems.

View Article and Find Full Text PDF

As rates of multilingualism increase, interest in the field of Languages Other Than English (LOTEs) has been growing over the last few years. This study investigated the motivation held by Chinese undergraduate students for learning Korean as a LOTE using Dörnyei's L2 Motivational Self System (L2MSS). In total, 123 subjects responded to the 6-point Likert scale measuring their Korean learning motivation.

View Article and Find Full Text PDF

A rapid surge in global energy consumption has led to a greater demand for renewable energy to overcome energy resource limitations and environmental problems. Recently, a number of van der Waals materials have been highlighted as efficient absorbers for very thin and highly efficient photovoltaic (PV) devices. Despite the predicted potential, achieving power conversion efficiencies (PCEs) above 5% in PV devices based on van der Waals materials has been challenging.

View Article and Find Full Text PDF

Brain-inspired parallel computing, which is typically performed using a hardware neural-network platform consisting of numerous artificial synapses, is a promising technology for effectively handling large amounts of informational data. However, the reported nonlinear and asymmetric conductance-update characteristics of artificial synapses prevent a hardware neural-network from delivering the same high-level training and inference accuracies as those delivered by a software neural-network. Here, we developed an artificial van-der-Waals hybrid synapse that features linear and symmetric conductance-update characteristics.

View Article and Find Full Text PDF

For increasing the restricted bit-density in the conventional binary logic system, extensive research efforts have been directed toward implementing single devices with a two threshold voltage (VTH) characteristic via the single negative differential resistance (NDR) phenomenon. In particular, recent advances in forming van der Waals (vdW) heterostructures with two-dimensional crystals have opened up new possibilities for realizing such NDR-based tunneling devices. However, it has been challenging to exhibit three VTH through the multiple-NDR (m-NDR) phenomenon in a single device even by using vdW heterostructures.

View Article and Find Full Text PDF

Although conventional homoepitaxy forms high-quality epitaxial layers, the limited set of material systems for commercially available wafers restricts the range of materials that can be grown homoepitaxially. At the same time, conventional heteroepitaxy of lattice-mismatched systems produces dislocations above a critical strain energy to release the accumulated strain energy as the film thickness increases. The formation of dislocations, which severely degrade electronic/photonic device performances, is fundamentally unavoidable in highly lattice-mismatched epitaxy.

View Article and Find Full Text PDF

Complex-oxide materials exhibit a vast range of functional properties desirable for next-generation electronic, spintronic, magnetoelectric, neuromorphic, and energy conversion storage devices. Their physical functionalities can be coupled by stacking layers of such materials to create heterostructures and can be further boosted by applying strain. The predominant method for heterogeneous integration and application of strain has been through heteroepitaxy, which drastically limits the possible material combinations and the ability to integrate complex oxides with mature semiconductor technologies.

View Article and Find Full Text PDF

The ground-breaking demonstration of the electric field effect in graphene reported more than a decade ago prompted the strong push towards the commercialization of graphene as evidenced by a wealth of graphene research, patents and applications. Graphene flake production capability has reached thousands of tonnes per year, while continuous graphene sheets of tens of metres in length have become available. Various graphene technologies developed in laboratories have now transformed into commercial products, with the very first demonstrations in sports goods, automotive coatings, conductive inks and touch screens, to name a few.

View Article and Find Full Text PDF

Recently, there have been various attempts to demonstrate the feasibility of transition metal dichalcogenide (TMD) transistors for digital logic circuits. A complementary inverter circuit, which is a basic building block of a logic circuit, was implemented in earlier works by heterogeneously integrating n- and p-channel transistors fabricated on different TMD materials. Subsequently, to simplify the circuit design and fabrication process, complementary inverters were constructed on single-TMD materials using ambipolar transistors.

View Article and Find Full Text PDF

The priority of synaptic device researches has been given to prove the device potential for the emulation of synaptic dynamics and not to functionalize further synaptic devices for more complex learning. Here, we demonstrate an optic-neural synaptic device by implementing synaptic and optical-sensing functions together on h-BN/WSe heterostructure. This device mimics the colored and color-mixed pattern recognition capabilities of the human vision system when arranged in an optic-neural network.

View Article and Find Full Text PDF

Although flakes of two-dimensional (2D) heterostructures at the micrometer scale can be formed with adhesive-tape exfoliation methods, isolation of 2D flakes into monolayers is extremely time consuming because it is a trial-and-error process. Controlling the number of 2D layers through direct growth also presents difficulty because of the high nucleation barrier on 2D materials. We demonstrate a layer-resolved 2D material splitting technique that permits high-throughput production of multiple monolayers of wafer-scale (5-centimeter diameter) 2D materials by splitting single stacks of thick 2D materials grown on a single wafer.

View Article and Find Full Text PDF

A highly stable and reversible n-type doping technique for molybdenum disulfide (MoS) transistors and photodetectors is developed in this study. This doping technique is based on triphenylphosphine (PPh) and significantly improves the performance of MoS transistor and photodetector devices in terms of the on/off-current ratio (8.72 × 10 → 8.

View Article and Find Full Text PDF

In recent years, various van der Waals (vdW) materials have been used in implementing high-performance photodetectors with high photoresponsivity over a wide detection range. However, in most studies reported so far, photodetection in the infrared (IR) region has not been achieved successfully. Although several vdW materials with narrow bandgaps have been proposed for IR detection, the devices based on these materials exhibit notably low photoresponsivity under IR light illumination.

View Article and Find Full Text PDF

In this study, we demonstrate a high-performance solid polymer electrolyte (SPE) atomic switching device with low SET/RESET voltages (0.25 and -0.5 V, respectively), high on/off-current ratio (10), excellent cyclic endurance (>10), and long retention time (>10 s), where poly-4-vinylphenol (PVP)/poly(melamine-co-formaldehyde) (PMF) is used as an SPE layer.

View Article and Find Full Text PDF

Multivalued logic (MVL) devices/circuits have received considerable attention because the binary logic used in current Si complementary metal-oxide-semiconductor (CMOS) technology cannot handle the predicted information throughputs and energy demands of the future. To realize MVL, the conventional transistor platform needs to be redesigned to have two or more distinctive threshold voltages (Vs). Here, we report a finding: the photoinduced drain current in graphene/WSe heterojunction transistors unusually decreases with increasing gate voltage under illumination, which we refer to as the light-induced negative differential transconductance (L-NDT) phenomenon.

View Article and Find Full Text PDF

Recently, negative differential resistance devices have attracted considerable attention due to their folded current-voltage characteristic, which presents multiple threshold voltage values. Because of this remarkable property, studies associated with the negative differential resistance devices have been explored for realizing multi-valued logic applications. Here we demonstrate a negative differential resistance device based on a phosphorene/rhenium disulfide (BP/ReS) heterojunction that is formed by type-III broken-gap band alignment, showing high peak-to-valley current ratio values of 4.

View Article and Find Full Text PDF

This study aims to verify the effects of electroacupuncture treatment on osteoarthritis of the knee. MEDLINE/PubMed, EMBASE, CENTRAL, AMED, CNKI, and five Korean databases were searched by predefined search strategies to screen eligible randomized controlled studies meeting established criteria. Any risk of bias in the included studies was assessed with the Cochrane Collaboration's tool.

View Article and Find Full Text PDF

The effects of triphenylphosphine (PPh3 ) and (3-amino-propyl)triethoxysilane (APTES) on a rhenium diselenide (ReSe2 ) photodetector are systematically studied by J.-H. Park and co-workers on page 6711 in comparison with a conventional MoS2 device.

View Article and Find Full Text PDF

An ultrahigh performance MoS2 photodetector with high photoresponsivity (1.94 × 10(6) A W(-1) ) and detectivity (1.29 × 10(12) Jones) under 520 nm and 4.

View Article and Find Full Text PDF

A high-performance ReS2 -based thin-film transistor and photodetector with high on/off-current ratio (10(4) ), high mobility (7.6 cm(2) V(-1) s(-1) ), high photoresponsivity (2.5 × 10(7) A W(-1) ), and fast temporal response (rising and decaying time of 670 ms and 5.

View Article and Find Full Text PDF

The effects of triphenylphosphine and (3-aminopropyl)triethoxysilane on a rhenium diselenide (ReSe2 ) photodetector are systematically studied by comparing with conventional MoS2 devices. This study demonstrates a very high performance ReSe2 photodetector with high photoresponsivity (1.18 × 10(6) A W(-1) ), fast photoswitching speed (rising/decaying time: 58/263 ms), and broad photodetection range (possible above 1064 nm).

View Article and Find Full Text PDF

A WSe2 -based vertical graphene-transition metal dichalcogenide heterojunction barristor shows an unprecedented on-current increase with decreasing temperature and an extremely high on/off-current ratio of 5 × 10(7) at 180 K (3 × 10(4) at room temperature). These features originate from a trap-assisted tunneling process involving WSe2 defect states aligned near the graphene Dirac point.

View Article and Find Full Text PDF