Publications by authors named "Shilpy Bhullar"

This study presents a facile synthesis strategy for magnetic field-responsive PEGylated iron-supplement-coated rutile titanium dioxide (TiO) nanoparticles (NPs) for stimulus-responsive drug delivery. Imatinib, an anticancer drug, was successfully loaded into NPs, and its release was investigated under different pH conditions. XRD analysis confirmed the successful synthesis of PEGylated iron supplement-coated rutile titania NPs.

View Article and Find Full Text PDF
Article Synopsis
  • * In co-culture experiments, MDSCs reduced the frequency and function of T helper 17 cells (Th17), which are involved in inflammation, while preserving and enhancing the function of regulatory T cells (Tregs) that help control immune responses.
  • * The study demonstrated that treating mice with MDSCs led to decreased maturation of antigen presenting cells (APCs) and a reduction in harmful Th17 responses, suggesting that MDSCs could be a promising therapeutic option for managing dry
View Article and Find Full Text PDF

Introduction: Titanium dioxide nanoparticles (TiO NPs) have shown tremendous potential in targeted drug-delivery applications. Among various mechanisms, magnetically guided transport of drugs is one such technique for the said purpose. TiO NPs being diamagnetic or sometimes exhibiting very weak ferromagnetism can be modified by treating them with suitable magnetic materials.

View Article and Find Full Text PDF

Nanoparticles (NPs) with sizes ranging from 2 nm to 1 μm find various applications in the field of theranostics. Moreover, if eco-friendly methods are opted for the synthesis of biocompatible and less toxic NPs, then that's a huge success. Titanium dioxide nanoparticles (TiO NPs) have been vigorously studied for their use in medical implants, photodynamic therapy, drug delivery, biosensing and as antimicrobial agents.

View Article and Find Full Text PDF

Targeted drug delivery is one such precision method of delivering medication inside the human body which can vanquish all the limitations of the conventional chemotherapeutic techniques. In the present study, two types of nanoparticles (NPs) were chosen for the in-vitro pH-responsive release study of the drug, Imatinib, namely anatase Titanium Dioxide nanoparticles (TiO NPs) and iron-capped TiO NPs, designated as Fe@TiO NPs. The novelty of this work lies behind the use of commercially available iron supplement 'Autrin' meant for human consumption, as the material to coat the TiO NPs to synthesize Fe@TiO NPs.

View Article and Find Full Text PDF